123 research outputs found
COST 733 - WG4: Applications of weather type classification
The main objective of the COST Action 733 is to achieve a general numerical method for
assessing, comparing and classifying typical weather situations in the European regions. To
accomplish this goal, different workgroups are established, each with their specific aims:
WG1: Existing methods and applications (finished); WG2: Implementation and development of
weather types classification methods; WG3: Comparison of selected weather types
classifications; WG4: Testing methods for various applications.
The main task of Workgroup 4 (WG4) in COST 733 implies the testing of the selected weather
type methods for various classifications. In more detail, WG4 focuses on the following topics:•
Selection of dedicated applications (using results from WG1),
• Performance of the selected applications using available weather types provided by WG2,
• Intercomparison of the application results as a results of different methods
• Final assessment of the results and uncertainties,
• Presentation and release of results to the other WGs and external interested
• Recommend specifications for a new (common) method WG2
Introduction
In order to address these specific aims, various applications are selected and WG4 is divided in
subgroups accordingly:
1.Air quality
2. Hydrology (& Climatological mapping)
3. Forest fires
4. Climate change and variability
5. Risks and hazards
Simultaneously, the special attention is paid to the several wide topics concerning some other
COST Actions such as: phenology (COST725), biometeorology (COST730), agriculture (COST 734)
and mesoscale modelling and air pollution (COST728).
Sub-groups are established to find advantages and disadvantages of different classification
methods for different applications. Focus is given to data requirements, spatial and temporal
scale, domain area, specifi
COST 733 – WG4: Applications of weather type classifications
Presentación realizada para: European Geosciences Union General Assembly celebrado del 19-24 de abril de 2009 en Viena
Characterization of antigenic variants of hepatitis C virus in immune evasion
<p>Abstract</p> <p>Background</p> <p>Antigenic variation is an effective way by which viruses evade host immune defense leading to viral persistence. Little is known about the inhibitory mechanisms of viral variants on CD4 T cell functions.</p> <p>Results</p> <p>Using sythetic peptides of a HLA-DRB1*15-restricted CD4 epitope derived from the non-structural (NS) 3 protein of hepatitis C virus (HCV) and its antigenic variants and the peripheral blood mononuclear cells (PBMC) from six HLA-DRB1*15-positive patients chronically infected with HCV and 3 healthy subjects, the <it>in vitro </it>immune responses and the phenotypes of CD4<sup>+</sup>CD25<sup>+ </sup>cells of chronic HCV infection were investigated. The variants resulting from single or double amino acid substitutions at the center of the core region of the Th1 peptide not only induce failed T cell activation but also simultaneously up-regulate inhibitory IL-10, CD25<sup>-</sup>TGF-β<sup>+ </sup>Th3 and CD4<sup>+</sup>IL-10<sup>+ </sup>Tr1 cells. In contrast, other variants promote differentiation of CD25<sup>+</sup>TGF-β<sup>+ </sup>Th3 suppressors that attenuate T cell proliferation.</p> <p>Conclusions</p> <p>Naturally occuring HCV antigenic mutants of a CD4 epitope can shift a protective peripheral Th1 immune response into an inhibitory Th3 and/or Tr1 response. The modulation of antigenic variants on CD4 response is efficient and extensive, and is likely critical in viral persistence in HCV infection.</p
Hepatitis C virus to hepatocellular carcinoma
Hepatitis C virus causes acute and chronic hepatitis and can lead to permanent liver damage and hepatocellular carcinoma (HCC) in a significant number of patients via oxidative stress, insulin resistance (IR), fibrosis, liver cirrhosis and HCV induced steatosis. HCV induced steatosis and oxidative stress causes steato-hepatitis and these pathways lead to liver injury or HCC in chronic HCV infection. Steatosis and oxidative stress crosstalk play an important role in liver damage in HCV infection. This Review illustrates viral and host factors which induce Oxidative stress, steatosis and leads toward HCC. It also expresses Molecular cascade which leads oxidative stress and steatosis to HCC
Strategies to Target Tumor Immunosuppression
The tumor microenvironment is currently in the spotlight of cancer immunology research as a key factor impacting tumor development and progression. While antigen-specific immune responses play a crucial role in tumor rejection, the tumor hampers these immune responses by creating an immunosuppressive microenvironment. Recently, major progress has been achieved in the field of cancer immunotherapy, and several groundbreaking clinical trials demonstrated the potency of such therapeutic interventions in patients. Yet, the responses greatly vary among individuals. This calls for the rational design of more efficacious cancer immunotherapeutic interventions that take into consideration the “immune signature” of the tumor. Multimodality treatment regimens that aim to enhance intratumoral homing and activation of antigen-specific immune effector cells, while simultaneously targeting tumor immunosuppression, are pivotal for potent antitumor immunity
HCV Induces Oxidative and ER Stress, and Sensitizes Infected Cells to Apoptosis in SCID/Alb-uPA Mice
Hepatitis C virus (HCV) is a blood-borne pathogen and a major cause of liver disease worldwide. Gene expression profiling was used to characterize the transcriptional response to HCV H77c infection. Evidence is presented for activation of innate antiviral signaling pathways as well as induction of lipid metabolism genes, which may contribute to oxidative stress. We also found that infection of chimeric SCID/Alb-uPA mice by HCV led to signs of hepatocyte damage and apoptosis, which in patients plays a role in activation of stellate cells, recruitment of macrophages, and the subsequent development of fibrosis. Infection of chimeric mice with HCV H77c also led an inflammatory response characterized by infiltration of monocytes and macrophages. There was increased apoptosis in HCV-infected human hepatocytes in H77c-infected mice but not in mice inoculated with a replication incompetent H77c mutant. Moreover, TUNEL reactivity was restricted to HCV-infected hepatocytes, but an increase in FAS expression was not. To gain insight into the factors contributing specific apoptosis of HCV infected cells, immunohistological and confocal microscopy using antibodies for key apoptotic mediators was done. We found that the ER chaperone BiP/GRP78 was increased in HCV-infected cells as was activated BAX, but the activator of ER stress–mediated apoptosis CHOP was not. We found that overall levels of NF-κB and BCL-xL were increased by infection; however, within an infected liver, comparison of infected cells to uninfected cells indicated both NF-κB and BCL-xL were decreased in HCV-infected cells. We conclude that HCV contributes to hepatocyte damage and apoptosis by inducing stress and pro-apoptotic BAX while preventing the induction of anti-apoptotic NF-κB and BCL-xL, thus sensitizing hepatocytes to apoptosis
Effect of HFE gene polymorphism on sustained virological response in patients with chronic hepatitis C and elevated serum ferritin
CONTEXT: Abnormal serum ferritin levels are found in approximately 20%-30% of the patients with chronic hepatitis C and are associated with a lower response rate to interferon therapy. OBJECTIVE: To determine if the presence of HFE gene mutations had any effect on the sustained virological response rate to interferon based therapy in chronic hepatitis C patients with elevated serum ferritin. METHODS: A total of 44 treatment naÏve patients with histologically demonstrated chronic hepatitis C, all infected with hepatitis C virus genotype non-1 (38 genotype 3; 6 genotype 2) and serum ferritin above 500 ng/mL were treated with interferon (3 MU, 3 times a week) and ribavirin (1.000 mg, daily) for 24 weeks. RESULTS: Sustained virological response was defined as negative qualitative HCV-RNA more than 24 weeks after the end of treatment. Serum HCV-RNA was measured by qualitative in house polymerase chain reaction with a limit of detection of 200 IU/mL. HFE gene mutation was detected using restriction-enzyme digestion with RsaI (C282Y mutation analysis) and BclI (H63D mutation analysis) in 16 (37%) patients, all heterozygous (11 H63D, 2 C282Y and 3 both). Sustained virological response was achieved in 0 of 16 patients with HFE gene mutations and 11 (41%) of 27 patients without HFE gene mutations (P = 0.002; exact Fisher test). CONCLUSION: Heterozigozity for H63D and/or C282Y HFE gene mutation predicts absence of sustained virological response to combination treatment with interferon and ribavirin in patients with chronic hepatitis C, non-1 genotype and serum ferritin levels above 500 ng/mL
- …