20,112 research outputs found

    Two-body transients in coupled atomic-molecular BECs

    Full text link
    We discuss the dynamics of an atomic Bose-Einstein condensate when pairs of atoms are converted into molecules by single-color photoassociation. Three main regimes are found and it is shown that they can be understood on the basis of time-dependent two-body theory. In particular, the so-called rogue dissociation regime [Phys. Rev. Lett., 88, 090403 (2002)], which has a density-dependent limit on the photoassociation rate, is identified with a transient regime of the two-atom dynamics exhibiting universal properties. Finally, we illustrate how these regimes could be explored by photoassociating condensates of alkaline-earth atoms.Comment: 4 pages, 3 figures - typos corrected in formula

    Hamiltonian Hopf bifurcation with symmetry

    Get PDF
    In this paper we study the appearance of branches of relative periodic orbits in Hamiltonian Hopf bifurcation processes in the presence of compact symmetry groups that do not generically exist in the dissipative framework. The theoretical study is illustrated with several examples.Comment: 35 pages, 3 figure

    Modeling Magnetic Anisotropy of Single Chain Magnets in d/J1|d/J| \geq 1 Regime

    Full text link
    Single molecule magnets (SMMs) with single-ion anisotropies d\mathbf d, comparable to exchange interactions J, between spins have recently been synthesized. In this paper, we provide theoretical insights into the magnetism of such systems. We study spin chains with site spins, s=1, 3/2 and 2 and on-site anisotropy d\mathbf d comparable to the exchange constants between the spins. We find that large d\mathbf d leads to crossing of the states with different MSM_S values in the same spin manifold of the d=0\mathbf d = 0 limit. For very large d\mathbf d's we also find that the MSM_S states of the higher energy spin states descend below the MSM_S states of the ground state spin manifold. Total spin in this limit is no longer conserved and describing the molecular anisotropy by the constants DMD_M and EME_M is not possible. However, the total spin of the low-lying large MSM_S states is very nearly an integer and using this spin value it is possible to construct an effective spin Hamiltonian and compute the molecular magnetic anisotropy constants DMD_M and EME_M. We report effect of finite sizes, rotations of site anisotropies and chain dimerization on the effective anisotropy of the spin chains

    Dynamics of a salinity-prone agricultural catchment driven by markets, farmers' attitude and climate change

    Full text link
    An agent-based simulation model has been developed with CORMAS combining simplified bio-physical processes of land cover, dry-land salinity changes, rainfall, farm profitability and farmer decisions on land uses in a dry-land agricultural catchment (no irrigation). Simulated farmers formulate individual decisions dealing with land use changes based on the combined performance of their past land cover productivity and market returns. The willingness to adapt to market drivers and the ability to maximize returns varies across farmers. In addition, farmers in the model can demonstrate various attitudes towards salinity mitigation as a consequence of experiencing and perceiving salinity on their farm, in the neighborhood or in the entire region. Consequently, farmers can adopt land cover strategies aiming at reducing salinity impact. The simulation results using historical rainfall records reproduces similar trends of crop-pasture ratios, salinity change and farm decline as observed in the last 20 years in the Katanning catchment (Western Australia). Using the model as an explorative tool for future scenarios, the simulation results highlighted the importance of rainfall changes and wide-spread willingness of farmers to combat dry-land salinity. Rainfall changes as a consequence of climate change can lead to prolonged sequences of dry and wet seasons. Adaptation to these sequences by farmers seems to be critical for farm survival in this catchment. (Résumé d'auteur

    Frequency modulated self-oscillation and phase inertia in a synchronized nanowire mechanical resonator

    Full text link
    Synchronization has been reported for a wide range of self-oscillating systems. However, even though it has been predicted theoretically for several decades, the experimental realization of phase self-oscillation, sometimes called phase trapping, in the high driving regime has been studied only recently. We explored in detail the phase dynamics in a synchronized field emission SiC nanoelectromechanical system with intrinsic feedback. A richer variety of phase behavior has been unambiguously identified, implying phase modulation and inertia. This synchronization regime is expected to have implications for the comprehension of the dynamics of interacting self-oscillating networks and for the generation of frequency modulated signals at the nanoscal
    corecore