Synchronization has been reported for a wide range of self-oscillating
systems. However, even though it has been predicted theoretically for several
decades, the experimental realization of phase self-oscillation, sometimes
called phase trapping, in the high driving regime has been studied only
recently. We explored in detail the phase dynamics in a synchronized field
emission SiC nanoelectromechanical system with intrinsic feedback. A richer
variety of phase behavior has been unambiguously identified, implying phase
modulation and inertia. This synchronization regime is expected to have
implications for the comprehension of the dynamics of interacting
self-oscillating networks and for the generation of frequency modulated signals
at the nanoscal