67 research outputs found

    Quantitative Analysis of Bloggers Collective Behavior Powered by Emotions

    Full text link
    Large-scale data resulting from users online interactions provide the ultimate source of information to study emergent social phenomena on the Web. From individual actions of users to observable collective behaviors, different mechanisms involving emotions expressed in the posted text play a role. Here we combine approaches of statistical physics with machine-learning methods of text analysis to study emergence of the emotional behavior among Web users. Mapping the high-resolution data from digg.com onto bipartite network of users and their comments onto posted stories, we identify user communities centered around certain popular posts and determine emotional contents of the related comments by the emotion-classifier developed for this type of texts. Applied over different time periods, this framework reveals strong correlations between the excess of negative emotions and the evolution of communities. We observe avalanches of emotional comments exhibiting significant self-organized critical behavior and temporal correlations. To explore robustness of these critical states, we design a network automaton model on realistic network connections and several control parameters, which can be inferred from the dataset. Dissemination of emotions by a small fraction of very active users appears to critically tune the collective states

    Collective emotions online and their influence on community life

    Get PDF
    E-communities, social groups interacting online, have recently become an object of interdisciplinary research. As with face-to-face meetings, Internet exchanges may not only include factual information but also emotional information - how participants feel about the subject discussed or other group members. Emotions are known to be important in affecting interaction partners in offline communication in many ways. Could emotions in Internet exchanges affect others and systematically influence quantitative and qualitative aspects of the trajectory of e-communities? The development of automatic sentiment analysis has made large scale emotion detection and analysis possible using text messages collected from the web. It is not clear if emotions in e-communities primarily derive from individual group members' personalities or if they result from intra-group interactions, and whether they influence group activities. We show the collective character of affective phenomena on a large scale as observed in 4 million posts downloaded from Blogs, Digg and BBC forums. To test whether the emotions of a community member may influence the emotions of others, posts were grouped into clusters of messages with similar emotional valences. The frequency of long clusters was much higher than it would be if emotions occurred at random. Distributions for cluster lengths can be explained by preferential processes because conditional probabilities for consecutive messages grow as a power law with cluster length. For BBC forum threads, average discussion lengths were higher for larger values of absolute average emotional valence in the first ten comments and the average amount of emotion in messages fell during discussions. Our results prove that collective emotional states can be created and modulated via Internet communication and that emotional expressiveness is the fuel that sustains some e-communities.Comment: 23 pages including Supporting Information, accepted to PLoS ON

    Mapping the Galactic Halo I. The `Spaghetti' Survey

    Get PDF
    We describe a major survey of the Milky Way halo designed to test for kinematic substructure caused by destruction of accreted satellites. We use the Washington photometric system to identify halo stars efficiently for spectroscopic followup. Tracers include halo giants (detectable out to more than 100 kpc), blue horizontal branch stars, halo stars near the main sequence turnoff, and the ``blue metal-poor stars'' of Preston et al (1994). We demonstrate the success of our survey by showing spectra of stars we have identified in all these categories, including giants as distant as 75 kpc. We discuss the problem of identifying the most distant halo giants. In particular, extremely metal-poor halo K dwarfs are present in approximately equal numbers to the distant giants for V fainter than 18, and we show that our method will distinguish reliably between these two groups of metal-poor stars. We plan to survey 100 square degrees at high galactic latitude, and expect to increase the numbers of known halo giants, BHB stars and turnoff stars by more than an order of magnitude. In addition to the strong test that this large sample will provide for the question `was the Milky Way halo accreted from satellite galaxies?', we will improve the accuracy of mass measurements of the Milky Way beyond 50 kpc via the kinematics of the many distant giants and BHB stars we will find. We show that one of our first datasets constrains the halo density law over galactocentric radii of 5-20 kpc and z heights of 2-15 kpc. The data support a flattened power-law halo with b/a of 0.6 and exponent -3.0. More complex models with a varying axial ratio may be needed with a larger dataset.Comment: 55 pages, 22 figures, to appear in the Astronomical Journa

    Exploring Halo Substructure with Giant Stars IV: The Extended Structure of the Ursa Minor Dwarf Spheroidal

    Full text link
    We present a large area photometric survey of the Ursa Minor dSph. We identify UMi giant star candidates extending to ~3 deg from the center of the dSph. Comparison to previous catalogues of stars within the tidal radius of UMi suggests that our photometric luminosity classification is 100% accurate. Over a large fraction of the survey area, blue horizontal branch stars associated with UMi can also be identified. The spatial distribution of both the UMi giant stars and the BHB stars are remarkably similar, and a large fraction of both samples of stars are found outside the tidal radius of UMi. An isodensity contour map of the stars within the tidal radius of UMi reveals two morphological peculiarities: (1) The highest density of dSph stars is offset from the center of symmetry of the outer isodensity contours. (2) The overall shape of the outer contours appear S-shaped. We find that previously determined King profiles with ~50' tidal radii do not fit well the distribution of our UMi stars. A King profile with a larger tidal radius produces a reasonable fit, however a power law with index -3 provides a better fit for radii > 20'. The existence of UMi stars at large distances from the core of the galaxy, the peculiar morphology of the dSph within its tidal radius, and the shape of its surface density profile all suggest that UMi is evolving significantly due to the tidal influence of the Milky Way. However, the photometric data on UMi stars alone does not allow us to determine if the candidate extratidal stars are now unbound or if they remain bound to the dSph within an extended dark matter halo. (Abridged)Comment: accepted by AJ, 32 pages, 15 figures, emulateapj5 styl

    Nonlinear magnetoinductive transmission lines

    Full text link
    Power transmission in one-dimensional nonlinear magnetic metamaterials driven at one end is investigated numerically and analytically in a wide frequency range. The nonlinear magnetic metamaterials are composed of varactor-loaded split-ring resonators which are coupled magnetically through their mutual inductances, forming thus a magnetoiductive transmission line. In the linear limit, significant power transmission along the array only appears for frequencies inside the linear magnetoinductive wave band. We present analytical, closed form solutions for the magnetoinductive waves transmitting the power in this regime, and their discrete frequency dispersion. When nonlinearity is important, more frequency bands with significant power transmission along the array may appear. In the equivalent circuit picture, the nonlinear magnetoiductive transmission line driven at one end by a relatively weak electromotive force, can be modeled by coupled resistive-inductive-capacitive (RLC) circuits with voltage-dependent capacitance. Extended numerical simulations reveal that power transmission along the array is also possible in other than the linear frequency bands, which are located close to the nonlinear resonances of a single nonlinear RLC circuit. Moreover, the effectiveness of power transmission for driving frequencies in the nonlinear bands is comparable to that in the linear band. Power transmission in the nonlinear bands occurs through the linear modes of the system, and it is closely related to the instability of a mode that is localized at the driven site.Comment: 11 pages, 11 figures, submitted to International Journal of Bifurcation and Chao

    Improved Color-Temperature Relations and Bolometric Corrections for Cool Stars

    Full text link
    We present new grids of colors and bolometric corrections for F-K stars having 4000 K < Teff < 6500 K, 0.0 < log g < 4.5 and -3.0 < [Fe/H] < 0.0. A companion paper extends these calculations into the M giant regime. Colors are tabulated for Johnson U-V and B-V; Cousins V-R and V-I; Johnson-Glass V-K, J-K and H-K; and CIT/CTIO V-K, J-K, H-K and CO. We have developed these color-temperature (CT) relations by convolving synthetic spectra with photometric filter-transmission-profiles. The synthetic spectra have been computed with the SSG spectral synthesis code using MARCS stellar atmosphere models as input. Both of these codes have been improved substantially, especially at low temperatures, through the incorporation of new opacity data. The resulting synthetic colors have been put onto the observational systems by applying color calibrations derived from models and photometry of field stars which have Teffs determined by the infrared-flux method. The color calibrations have zero points and slopes which change most of the original synthetic colors by less than 0.02 mag and 5%, respectively. The adopted Teff scale (Bell & Gustafsson 1989) is confirmed by the extraordinary agreement between the predicted and observed angular diameters of the field stars. We have also derived empirical CT relations from the field-star photometry. Except for the coolest dwarfs (Teff < 5000 K), our calibrated, solar-metallicity model colors are found to match these and other empirical relations quite well. Our calibrated, 4 Gyr, solar-metallicity isochrone also provides a good match to color-magnitude diagrams of M67. We regard this as evidence that our calibrated colors can be applied to many astrophysical problems, including modelling the integrated light of galaxies. (abridged)Comment: To appear in the March 2000 issue of the Astronomical Journal. 72 pages including 16 embedded postscript figures (one page each) and 6 embedded postscript tables (18 pages total

    A Search for Stellar Populations in High Velocity Clouds

    Full text link
    We report the results of a photometric search for giant stars associated with the cores of four high velocity clouds (HVCs) -- two of which are compact HVCs -- using the Las Campanas Du Pont 2.5 meter and Cerro Tololo Blanco 4 meter telescopes in combination with a system of filters (Washington M, T_2 + DDO51) useful for identifying low surface gravity, evolved stars. Identical observations of nearby control fields provide a measure of the ``giant star'' background. Our data reach M_0=22 for three of the HVCs and M_0=21.25 for the fourth, depths that allow the detection of any giant stars within 600 kpc. Although we identify a number of faint late-type giant star candidates, we find neither a coherent red giant branch structure nor a clear excess of giant candidate counts in any HVC. This indicates that the giant candidates are probably not related to the HVCs and are more likely to be either random Milky Way giant stars or one of several classes of potential survey contaminants. Echelle spectroscopy of the brightest giant candidates in one HVC and its control field reveal radial velocities representative of the canonical Galactic stellar populations. In addition to these null results, no evidence of any young HVC stellar populations -- represented by blue main sequence stars -- is found, a result consistent with previous searches. Our methodology, specifically designed to find faint diffuse stellar populations, places the tightest upper limit yet on the total stellar mass of HVCs of a few 10^5 M_{\sun}.Comment: 40 pages, 10 figures, accepted for publication in Ap

    Detailed abundances of a large sample of giant stars in M 54 and in the Sagittarius nucleus

    Full text link
    Homogeneous abundances of light elements, alpha and Fe-group elements from high-resolution FLAMES spectra are presented for 76 red giant stars in M54, a massive globular cluster (GC) lying in the nucleus of the Sagittarius dwarf galaxy. We also derived detailed abundances for 27 red giants belonging to the Sgr nucleus. Our abundances assess the intrinsic metallicity dispersion (~0.19 dex, rms scatter) of M54, with the bulk of stars peaking at [Fe/H]~-1.6 and a long tail extending to higher metallicities, similar to omega Cen. The spread in these probable nuclear star clusters exceeds those of most GCs: these massive clusters are located in a region intermediate between normal GCs and dwarf galaxies. M54 shows the Na-O anticorrelation, typical signature of GCs, which is instead absent in the Sgr nucleus. The light elements (Mg, Al, Si) participating to the high temperature Mg-Al cycle show that the pattern of (anti)correlations produced by proton-capture reactions in H-burning is clearly different between the most metal-rich and most metal-poor components in the two most massive GCs in the Galaxy, confirming early result based on the Na-O anticorrelation. As in omega Cen, stars affected by most extreme processing, i.e. showing the signature of more massive polluters, are those of the metal-rich component. This can be understood if the burst of star formation giving birth to the metal-rich component was delayed by as much as 10-30 Myr with respect to the metal-poor one. The evolution of these massive GCs can be reconciled in the general scenario for the formation of GCs sketched in Carretta et al.(2010a) taking into account that omega Cen could have already incorporated the surrounding nucleus of its progenitor and lost the rest of the hosting galaxy while the two are still observable as distinct components in M54 and the surrounding field.Comment: 22 pages (3 pages of appendix), 25 figures. Tables 2, 3, 5, 6, and 7 are only available in electronic form at the CDS Accepted for publication on Astronomy and Astrophysic

    Hold me or stroke me? Individual differences in static and dynamic affective touch

    Get PDF
    Low-threshold mechanosensory C-fibres, C-tactile afferents (CTs), respond optimally to sensations associated with a human caress. Additionally, CT-stimulation activates brain regions associated with processing affective states. This evidence has led to the social touch hypothesis, that CTs have a key role in encoding the affective properties of social touch. Thus, to date, the affective touch literature has focussed on gentle stroking touch. However, social touch interactions involve many touch types, including static, higher force touch such as hugging and holding. This study aimed to broaden our understanding of the social touch hypothesis by investigating relative preference for static vs dynamic touch and the influence of force on these preferences. Additionally, as recent literature has highlighted individual differences in CT-touch sensitivity, this study investigated the influence of affective touch experiences and attitudes, autistic traits, depressive symptomology and perceived stress on CT-touch sensitivity. Directly experienced, robotic touch responses were obtained through a lab-based study and vicarious touch responses through an online study where participants rated affective touch videos. Individual differences were determined by self-report questionnaire measures. In general, static touch was preferred over CT-non-optimal stroking touch, however, consistent with previous reports, CT-optimal stroking (velocity 1–10 cm/s) was rated most pleasant. However, static and CT-optimal vicarious touch were rated comparably for dorsal hand touch. For all velocities, 0.4N was preferred over 0.05N and 1.5N robotic touch. Participant dynamic touch quadratic terms were calculated for robotic and vicarious touch as a proxy CT-sensitivity measure. Attitudes to intimate touch significantly predict robotic and vicarious quadratic terms, as well as vicarious static dorsal hand touch ratings. Perceived stress negatively predicted robotic static touch ratings. This study has identified individual difference predictors of CT-touch sensitivity. Additionally, it has highlighted the context dependence of affective touch responses and the need to consider static, as well as dynamic affective touch.</jats:p
    • …
    corecore