601 research outputs found

    From Crystalline to Amorphous Germania Bilayer Films at the Atomic Scale: Preparation and Characterization

    No full text
    A new two-dimensional (2D) germanium dioxide film has been prepared. The film consists of interconnected germania tetrahedral units forming a bilayer structure, weakly coupled to the supporting Pt(111) metal-substrate. Density functional theory calculations predict a stable structure of 558-membered rings for germania films, while for silica films 6-membered rings are preferred. By varying the preparation conditions the degree of order in the germania films is tuned. Crystalline, intermediate ordered and purely amorphous film structures are resolved by analysing scanning tunnelling microscopy images

    Inspiratory muscle training and its effect on indices of physiological and perceived stress during incremental walking exercise in normobaric hypoxia

    Get PDF
    This study evaluated the effects of inspiratory muscle training (IMT) on inspiratory muscle fatigue (IMF) and physiological and perceptual responses during trekking-specific exercise. An 8-week IMT program was completed by 21 males (age 32.4 ± 9.61 years, VO2peak 58.8 ± 6.75 mL/kg/min) randomised within matched pairs to either the IMT group (n = 11) or the placebo group [(P), n = 9]. Twice daily, participants completed 30 (IMT) or 60 (P) inspiratory efforts using a Powerbreathe initially set at a resistance of 50% (IMT) or used at 15% (P) of maximal inspiratory pressure (MIP) throughout. A loaded (12.5 kg) 39-minute incremental walking protocol (3–5 km/hour and 1–15% gradient) was completed in normobaric hypoxia (PIO2 = 110 mmHg, 3000 m) before and after training. MIP increased from 164 to 188 cmH2O (18%) and from 161 to 171 cmH2O (6%) in the IMT and P groups (P = 0.02). The 95% CI for IMT showed a significant improvement in MIP (5.21±43.33 cmH2O), but not for P. IMF during exercise (MIP) was*5%, showing no training effect for either IMT or P (P = 0.23). Rating of perceived exertion (RPE) was consistently reduced (*1) throughout exercise following training for IMT, but not for P (P = 0.03). The mean blood lactate concentration during exercise was significantly reduced by 0.26 and 0.15 mmol/L in IMT and P (P = 0.00), with no differences between groups (P = 0.34). Rating of dyspnoea during exercise decreased (*0.4) following IMT but increased (*0.3) following P (P = 0.01). IMT may attenuate the increased physiological and perceived exercise stress experienced during normobaric hypoxia, which may benefit moderate altitude expedition

    From Crystalline to Amorphous Germania Bilayer Films at the Atomic Scale: Preparation and Characterization

    Get PDF
    A new two-dimensional (2D) germanium dioxide film has been prepared. The film consists of interconnected germania tetrahedral units forming a bilayer structure, weakly coupled to the supporting Pt(111) metal-substrate. Density functional theory calculations predict a stable structure of 558-membered rings for germania films, while for silica films 6-membered rings are preferred. By varying the preparation conditions the degree of order in the germania films is tuned. Crystalline, intermediate ordered and purely amorphous film structures are resolved by analysing scanning tunnelling microscopy images

    semi multiplex pcr technique for screening of abundant transcripts during systematic sequencing of cdna libraries

    Get PDF
    The systematic sequencing of cDNA libraries is an efficient approach for the identification of new genes, but the presence of abundant mRNAs is often a major problem. This paper describes a very si..

    Controlling the charge state of single Mo dopants in a CaO film

    No full text
    Recent experiments have demonstrated that tiny amounts of Mo impurities give rise to drastic changes in the adsorption characteristic of a wide-gap CaO(001) film. In this scanning tunneling microscopy (STM) and density functional theory paper, we elucidate the underlying mechanism by analyzing the energy levels of the Mo dopants as a function of their oxidation state and depth below the surface. We show that Mo2+ ions in CaO subsurface layers can be reversibly charged and discharged by inducing local band-bending effects with the STM tip. A similar charge switching is not possible for Mo species in a higher oxidation state, as their highest-occupied molecular orbitals are located well below the onset of the CaO conduction band. The easiness of charge switching in Mo2+ ions explains the remarkable chemical properties of doped CaO films, as it renders the material a strong electron donor to adsorbates bound to the oxide surface

    Photoluminescence dispersion as a probe of structural inhomogeneity in silica

    Full text link
    We report time-resolved photoluminescence spectra of point defects in amorphous silicon dioxide (silica), in particular the decay kinetics of the emission signals of extrinsic Oxygen Deficient Centres of the second type from singlet and directly-excited triplet states are measured and used as a probe of structural inhomogeneity. Luminescence activity in sapphire (α\alpha-Al2_2O3_3) is studied as well and used as a model system to compare the optical properties of defects in silica with those of defects embedded in a crystalline matrix. Only for defects in silica, we observe a variation of the decay lifetimes with emission energy and a time dependence of the first moment of the emission bands. These features are analyzed within a theoretical model with explicit hypothesis about the effect introduced by the disorder of vitreous systems. Separate estimations of the homogenous and inhomogeneous contributions to the measured emission linewidth are obtained: it is found that inhomogeneous effects strongly condition both the triplet and singlet luminescence activities of oxygen deficient centres in silica, although the degree of inhomogeneity of the triplet emission turns out to be lower than that of the singlet emission. Inhomogeneous effects appear to be negligible in sapphire

    Ultrathin silica films on Pd(111): Structure and adsorption properties

    Get PDF
    We studied the preparation of thin silica films on Pd(111) using low energy electron diffraction (LEED), infrared reflection-absorption spectroscopy (IRAS), and scanning tunneling microscopy (STM). The films grow from the onset as a double-layer (bilayer) silicate and show no long-range ordering as judged by LEED, thus bearing close similarities to the silicate films grown on a Pt(111) support. The results provide further evidence that the principal structure (monolayer vs bilayer) of ultrathin silica films on metal substrates is primarily governed by the affinity of a metal substrate to oxygen. Individual adsorption of CO and D2 on the prepared films showed that both molecules penetrate through the film and chemisorb on the Pd(111) surface. Density functional theory (DFT) calculations showed that CO bonding on Pd(111) underneath the silica film becomes weaker as compared to the bare Pd(111) surface, but the vibrational frequencies remain unaffected, that is in nice agreement with the experimental results
    • …
    corecore