2,772 research outputs found

    REPLY TO HEP-PH/0211241 "On the extra factor of two in the phase of neutrino oscillations"

    Full text link
    Arguments continue to appear in the literature concerning the validity of the standard oscillation formula. We point out some misunderstandings and try to explain in simple terms our viewpoint.Comment: 4 pages [1 colored LaTex-fig], AMS-Te

    Wave packets and quantum oscillations

    Full text link
    We give a detailed analysis of the oscillation formula within the context of the wave packet formalism. Particular attention is made to insure flavor eigenstate creation in the physical cases (Delta p not equal 0). This requirement imposes non instantaneous particle creation in all frames. It is shown that the standard formula is not only exact when the mass wave packets have the same velocity, but it is a good approximation when minimal slippage occurs. For more general situations the oscillation formula contains additional arbitrary parameters, which allows for the unknown form of the wave packet envelope.Comment: 15 pages [8 figs], AMS-Te

    Custodial SO(4) symmetry and CP violation in N-Higgs-doublet potentials

    Full text link
    We study the implementation of global SO(4)SU(2)LSU(2)RSO(4)\sim SU(2)_L\otimes SU(2)_R symmetry in general potentials with N-Higgs-doublets in order to obtain models with custodial SO(3)CSO(3)_C symmetry. We conclude that any implementation of the custodial SO(4) symmetry is equivalent, by a basis transformation, to a canonical one if SU(2)LSU(2)_L is the gauge factor, U(1)YU(1)_Y is embedded in SU(2)RSU(2)_R and we require NN copies of the doublet representation of SU(2)RSU(2)_R. The invariance by SO(4) automatically leads to a CP invariant potential and the basis of the canonical implementation of SO(4) is aligned to a basis where CP-symmetry acts in the standard fashion. We show different but equivalent implementations for the 2HDM, including an implementation not previously considered.Comment: 22pp, REVTeX4. Published versio

    On the Decelerating Shock Instability of Plane-Parallel Slab with Finite Thickness

    Get PDF
    Dynamical stability of the shock compressed layer with finite thickness is investigated. It is characterized by self-gravity, structure, and shock condition at the surfaces of the compressed layer. At one side of the shocked layer, its surface condition is determined via the ram pressure, while at the other side the thermal pressure supports its structure. When the ram pressure dominates the thermal pressure, we expect deceleration of the shocked layer. Especially, in this paper, we examine how the stratification of the decelerating layer has an effect on its dynamical stability. Performing the linear perturbation analysis, a {\it more general} dispersion relation than the previous one obtained by one of the authors is derived. It gives us an interesting information about the stability of the decelerating layer. Importantly, the DSI (Decelerating Shock Instability) and the gravitational instability are always incompatible. We also consider the evolution effect of the shocked layer. In the early stages of its evolution, only DSI occurs. On the contrary, in the late stages, it is possible for the shocked layer to be unstable for the DSI (in smaller scale) and the gravitational instability (in larger scale). Furthermore, we find there is a stable range of wavenumbers against both the DSI and the gravitational instability between respective unstable wavenumber ranges. These stable modes suggest the ineffectiveness of DSI for the fragmentation of the decelerating slab.Comment: 17 pages, 6 figures. The Astrophysical Journal Vol.532 in pres

    Anatomical Changes in the Skin of Rattus Norvegicus After Artificial UV Exposure

    Full text link
    Acute and subacute artificial UV exposure to albino rats exhibit morphological and histo-anatomical changes in the skin of albino rat. The anatomical changes include hyperplasia, hyperkeratosis, hypergranulosis and acanthosis beside numerical changes in keratinocytes, Langerhans, melanocytes and fibroblast seen after acute and subacute artificial UVB exposure

    Folded modes in the infrared spectra of the spin-Peierls phase of CuGeO_3

    Full text link
    Polarized far-infrared transmittance spectra of CuGeO_3 single crystals were measured at different temperatures (6K < T < 300K). Two spectral lines, at 284.2 cm-1 in E||c polarization and at 311.7 cm-1 in E||b polarization, appear at the temperature of the spin-Peierls transition and grow in intensity with decreasing temperature. Both of them are, most probably, folded modes of the dimerized lattice. We discuss a possible role of the spin-phonon interaction in the formation of the 311.7 cm-1 feature.Comment: 4 pages, 5 figures, 1 table; Submitted to Phys.Rev.B Second revision. Figures and text were slightly change

    Symmetry and dimension of the magnon dispersion of inorganic spin-Peierls systems

    Full text link
    The data on the dispersion of the magnetic excitations of CuGeO_3 in the spin-Peierls dimerized phase are analyzed. On the basis of the lattice structure it is shown that even along the chains the d=2d=2 character cannot be neglected. The symmetry of the dispersion differs from the one assumed so far. The magnetic resonance data is reinterpreted. The possibility of interchain rather than intrachain frustration is discussed.Comment: 4 pages, Revtex, to appear in PR

    CP properties of symmetry-constrained two-Higgs-doublet models

    Get PDF
    The two-Higgs-doublet model can be constrained by imposing Higgs-family symmetries and/or generalized CP symmetries. It is known that there are only six independent classes of such symmetry-constrained models. We study the CP properties of all cases in the bilinear formalism. An exact symmetry implies CP conservation. We show that soft breaking of the symmetry can lead to spontaneous CP violation (CPV) in three of the classes.Comment: 14 pages, 2 tables, revised version adapted to the journal publicatio

    First quantized approaches to neutrino oscillations and second quantization

    Full text link
    Neutrino oscillations are treated from the point of view of relativistic first quantized theories and compared to second quantized treatments. Within first quantized theories, general oscillation probabilities can be found for Dirac fermions and charged spin 0 bosons. A clear modification in the oscillation formulas can be obtained and its origin is elucidated and confirmed to be inevitable from completeness and causality requirements. The left-handed nature of created and detected neutrinos can also be implemented in the first quantized Dirac theory in presence of mixing; the probability loss due to the changing of initially left-handed neutrinos to the undetected right-handed neutrinos can be obtained in analytic form. Concerning second quantized approaches, it is shown in a calculation using virtual neutrino propagation that both neutrinos and antineutrinos may also contribute as intermediate particles. The sign of the contributing neutrino energy may have to be chosen explicitly without being automatic in the formalism. At last, a simple second quantized description of the flavor oscillation phenomenon is devised. In this description there is no interference terms between positive and negative components, but it still gives simple normalized oscillation probabilities. A new effect appearing in this context is an inevitable but tiny violation of the initial flavor of neutrinos. The probability loss due to the conversion of left-handed neutrinos to right-handed neutrinos is also presented.Comment: version accepted for publicatio

    Interchain interactions and magnetic properties of Li2CuO2

    Full text link
    An effective Hamiltonian is constructed for an insulating cuprate with edge-sharing chains Li2CuO2.The Hamiltonian contains the nearest and next-nearest neighboring intrachain and zigzag-type interchain interactions.The values of the interactions are obtained from the analysis of the magnetic susceptibility, and this system is found to be described as coupled frustrated chains.We calculate the dynamical spin correlation function S(q,\omega) by using the exact diagonalization method, and show that the spectra of S(q,\omega) are characterized by the zigzag-type interchain interactions. The results of the recent inelastic neutron scattering experiment are discussed in the light of the calculated spectra.Comment: 4 pages, 3 figures, RevTe
    corecore