26 research outputs found

    Churn Prediction Task in MOOC

    Get PDF
    Churn prediction is a common task for machine learning applications in business. In this paper, this task is adapted for solving problem of low efficiency of massive open online courses (only 5% of all the students finish their course). The approach is presented on course “Methods and algorithms of the graph theory” held on national platform of online education in Russia. This paper includes all the steps to build an intelligent system to predict students who are active during the course, but not likely to finish it. The first part consists of constructing the right sample for prediction, EDA and choosing the most appropriate week of the course to make predictions on. The second part is about choosing the right metric and building models. Also, approach with using ensembles like stacking is proposed to increase the accuracy of predictions. As a result, a general approach to build a churn prediction model for online course is reviewed. This approach can be used for making the process of online education adaptive and intelligent for a separate student

    КОРА И МАНТИЯ БАЙКАЛЬСКОЙ РИФТОВОЙ ЗОНЫ ПО ДАННЫМ ПРИЕМНЫХ ФУНКЦИЙ ПРОДОЛЬНЫХ И ПОПЕРЕЧНЫХ ВОЛН

    Get PDF
    We have obtained P-wave and S-wave receiver functions for 10 broadband seismograph stations in the Baikal rift zone (BRZ) and inverted them for seismic velocity models of the crust and upper mantle. The thinnest crust (30–35 km) is found in the Baikal basin, the thickest in the East Sayan uplift (45–50 km). Intermediate values (40 km) are found in the BRZ at distances around 100 km from Lake Baikal. A high (at least 1.8) Vp/Vs ratio is observed in the middle and lower crust. It exceeds 2.0 at some stations. In our opinion, the highest Vp/Vs ratios are due to fluid-filled porosity with a high pore pressure. The seismic lithosphere – asthenosphere boundary (LAB) is manifested by a shear velocity drop from 4.5 km/s to 4.0–4.2 km/s. Beneath the Baikal basin, the LAB is located at a depth not more than 50 km, and the S velocity drop is maximal (10 %). A similar structure is found outside the basin, underneath a segment of the East Sayan uplift. At other locations in the BRZ, a typical depth of the LAB varies from 80 to 90 km. Having considered changes in the depth of the 410 km seismic discontinuity, we cannot find any evidence of an elevated temperature of a hypothetical thermal plume beneath the BRZ. Для десяти широкополосных сейсмических станций в Байкальской рифтовой зоне получены приемные функции продольных и поперечных волн и выполнено их совместное обращение в скоростные разрезы. Самая тонкая кора (30–35 км) приурочена к Байкальской впадине, самая толстая – к Восточному Саяну (45–50 км). Промежуточные значения (около 40 км) получены в БРЗ на удалениях около 100 км от Байкала. В средней и нижней коре систематически наблюдается высокое (не менее 1.8) отношение скоростей Vp/Vs, которое на нескольких станциях превышает 2.0. Самые высокие значения мы объясняем присутствием флюида с высоким поровым давлением. Сейсмическая граница литосфера – астеносфера проявляется падением скорости поперечных волн с глубиной от 4.5 до 4.0–4.2 км/с. Под Байкальской впадиной эта граница находится на глубинах, не превышающих 50 км, и понижение скорости поперечных волн в астеносфере достигает максимальных значений (около 10 %). За пределами Байкальской впадины сходная структура наблю­дается под частью Восточного Саяна. В остальных случаях характерное значение глубины границы лито­сфера – астеносфера составляет 80–90 км. Повышение температуры в гипотетическом мантийном плюме под БРЗ по изменению глубины 410-километровой сейсмической границы не обнаружено

    Stochastic Inversion of P-to-S Converted Waves for Mantle Composition and Thermal Structure: Methodology and Application

    Get PDF
    We present a new methodology for inverting P‐to‐S receiver function (RF) waveforms directly for mantle temperature and composition. This is achieved by interfacing the geophysical inversion with self‐consistent mineral phase equilibria calculations from which rock mineralogy and its elastic properties are predicted as a function of pressure, temperature, and bulk composition. This approach anchors temperatures, composition, seismic properties, and discontinuities that are in mineral physics data, while permitting the simultaneous use of geophysical inverse methods to optimize models of seismic properties to match RF waveforms. Resultant estimates of transition zone (TZ) topography and volumetric seismic velocities are independent of tomographic models usually required for correcting for upper mantle structure. We considered two end‐member compositional models: the equilibrated equilibrium assemblage (EA) and the disequilibrated mechanical mixture (MM) models. Thermal variations were found to influence arrival times of computed RF waveforms, whereas compositional variations affected amplitudes of waves converted at the TZ discontinuities. The robustness of the inversion strategy was tested by performing a set of synthetic inversions in which crustal structure was assumed both fixed and variable. These tests indicate that unaccounted‐for crustal structure strongly affects the retrieval of mantle properties, calling for a two‐step strategy presented herein to simultaneously recover both crustal and mantle parameters. As a proof of concept, the methodology is applied to data from two stations located in the Siberian and East European continental platforms.This work was supported by a grant from the Swiss National Science Foundation (SNF project 200021_159907). B. T. was funded by a Délégation CNRS and Congé pour Recherches et Conversion Thématique from the Université de Lyon to visit the Research School of Earth Sciences (RSES), The Australian National University (ANU). B. T. has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement 79382

    Crustal Structure in Central-Eastern Greenland From Receiver Functions

    No full text
    The crustal structure in the interior of Greenland is largely unknown because of its remote location below the up to 3.4‐km‐thick ice sheet. We present a model of the crustal velocity structure in central‐eastern Greenland based on simultaneous inversion of P and S receiver functions for data acquired at 23 broadband stations between the coast and the center of the ice sheet. The area is believed to mainly include Precambrian basement and includes a part covered by Tertiary volcanic rocks and some sedimentary basins. Our results show a westward deepening Moho from less than 20 km at the coast to 50 km below central Greenland. Crustal S wave velocities are generally 3.75 km/s through the whole crust which may be relatively small for Precambrian areas, and V p /V s is generally around 1.73, although slightly higher in central Greenland. In the coastal area we observe anomalously low velocities at the top of the crust. In the volcanic area south of Scoresbysund Fjord this layer has very high V p /V s (>2), which indicates a high mafic content and the presence of water‐filled cracks in the basaltic material. In the north, outside the volcanic area, V p /V s is normal and the low‐velocity layer probably is instead related to the presence of sedimentary basins. At stations in the center of our study area we find low V s and high V p /V s in the lower crust. Based on the Moho topography, our results do not support Airy type isostasy as explanation of the high topography in eastern Greenland

    Lithosphere of the Dharwar craton by joint inversion of P and S receiver functions

    No full text
    The Archean Dharwar craton in south India is known for long time to be different from most other cratons. Specifically, at station Hyderabad (HYB) the Ps converted phases from the 410- and 660-km mantle discontinuities arrive up to 2 s later than in other cratons of comparable age, which implies lower upper mantle velocities. To resolve the unique lithosphere-asthenosphere system of the Dharwar craton, we inverted jointly P and S receiver functions and teleseismic P and S traveltime residuals at 10 seismograph stations. This method operates in the same depth range as long-period surface waves but differs by much higher lateral and radial resolution. We observe striking differences in crustal structures between the eastern and western Dharwar craton (EDC and WDC, respectively): crustal thickness is of around 31 km, with predominantly felsic velocities, in the EDC and of around 55 km, with predominantly mafic velocities, in the WDC. In the mantle we observe significant variations in the P velocity with depth, practically without accompanying variations in the S velocity. In the mantle S velocity there are azimuth-dependent indications of the Hales discontinuity at a depth of similar to 100 km. The most conspicuous feature of our models is the lack of the high velocity mantle keel with the S velocity of similar to 4.7 km s(-1), typical of other Archean cratons. The S velocity in our models is close to 4.5 km s(-1) from the Moho to a depth of similar to 250 km. There are indications of a similar upper mantle structure in the northeast of the Indian craton and of a partial recovery of the normal shield structure in the northwest. A division between the high S-velocity western Tibet and low S-velocity eastern Tibet may be related to a similar division between the northeastern and northwestern Indian craton

    Lithosphere of the Dharwar craton by joint inversion of P and S receiver functions

    No full text
    The Archean Dharwar craton in south India is known for long time to be different from most other cratons. Specifically, at station Hyderabad (HYB) the Ps converted phases from the 410- and 660-km mantle discontinuities arrive up to 2 s later than in other cratons of comparable age, which implies lower upper mantle velocities. To resolve the unique lithosphere-asthenosphere system of the Dharwar craton, we inverted jointly P and S receiver functions and teleseismic P and S traveltime residuals at 10 seismograph stations. This method operates in the same depth range as long-period surface waves but differs by much higher lateral and radial resolution. We observe striking differences in crustal structures between the eastern and western Dharwar craton (EDC and WDC, respectively): crustal thickness is of around 31 km, with predominantly felsic velocities, in the EDC and of around 55 km, with predominantly mafic velocities, in the WDC. In the mantle we observe significant variations in the P velocity with depth, practically without accompanying variations in the S velocity. In the mantle S velocity there are azimuth-dependent indications of the Hales discontinuity at a depth of ~100 km. The most conspicuous feature of our models is the lack of the high velocity mantle keel with the S velocity of ~4.7 km s-1, typical of other Archean cratons. The S velocity in our models is close to 4.5 km s-1 from the Moho to a depth of ~250 km. There are indications of a similar upper mantle structure in the northeast of the Indian craton and of a partial recovery of the normal shield structure in the northwest. A division between the high S-velocity western Tibet and low S-velocity eastern Tibet may be related to a similar division between the northeastern and northwestern Indian craton

    CRUST AND MANTLE OF THE BAIKAL RIFT ZONE FROM P- AND S-WAVE RECEIVER FUNCTIONS

    No full text
    We have obtained P-wave and S-wave receiver functions for 10 broadband seismograph stations in the Baikal rift zone (BRZ) and inverted them for seismic velocity models of the crust and upper mantle. The thinnest crust (30–35 km) is found in the Baikal basin, the thickest in the East Sayan uplift (45–50 km). Intermediate values (40 km) are found in the BRZ at distances around 100 km from Lake Baikal. A high (at least 1.8) Vp/Vs ratio is observed in the middle and lower crust. It exceeds 2.0 at some stations. In our opinion, the highest Vp/Vs ratios are due to fluid-filled porosity with a high pore pressure. The seismic lithosphere – asthenosphere boundary (LAB) is manifested by a shear velocity drop from 4.5 km/s to 4.0–4.2 km/s. Beneath the Baikal basin, the LAB is located at a depth not more than 50 km, and the S velocity drop is maximal (10 %). A similar structure is found outside the basin, underneath a segment of the East Sayan uplift. At other locations in the BRZ, a typical depth of the LAB varies from 80 to 90 km. Having considered changes in the depth of the 410 km seismic discontinuity, we cannot find any evidence of an elevated temperature of a hypothetical thermal plume beneath the BRZ
    corecore