2,907 research outputs found
On Optimal Binary One-Error-Correcting Codes of Lengths and
Best and Brouwer [Discrete Math. 17 (1977), 235-245] proved that
triply-shortened and doubly-shortened binary Hamming codes (which have length
and , respectively) are optimal. Properties of such codes are
here studied, determining among other things parameters of certain subcodes. A
utilization of these properties makes a computer-aided classification of the
optimal binary one-error-correcting codes of lengths 12 and 13 possible; there
are 237610 and 117823 such codes, respectively (with 27375 and 17513
inequivalent extensions). This completes the classification of optimal binary
one-error-correcting codes for all lengths up to 15. Some properties of the
classified codes are further investigated. Finally, it is proved that for any
, there are optimal binary one-error-correcting codes of length
and that cannot be lengthened to perfect codes of length
.Comment: Accepted for publication in IEEE Transactions on Information Theory.
Data available at http://www.iki.fi/opottone/code
Selection for novel, acid-tolerant Desulfovibrio spp. from a closed Transbaikal mine site in a temporal pH- gradient bioreactor
Almost all the known isolates of acidophilic or acid-tolerant sulphate-reducing bacteria (SRB) belong to the spore-forming genus Desulfosporosinus in the Firmicutes. The objective of this study was to isolate acidophilic/acid-tolerant members of the genus Desulfovibrio
belonging to deltaproteobacterial SRB. The sample material originated from microbial mat biomass submerged in mine water and was enriched for sulphate reducers by cultivation in anaerobic medium with lactate as an electron donor. A stirred tank bioreactor with the same medium composition was inoculated with the sulphidogenic enrichment. The bioreactor was operated with a temporal pH gradient, changing daily, from an initial pH of 7.3 to a final pH of 3.7. Among the bacteria in the bioreactor culture, Desulfovibrio was the only SRB group retrieved from the bioreactor consortium as observed by 16S rRNA-targeted denaturing gradient gel electrophoresis. Moderately acidophilic/acid-tolerant isolates belonged to
Desulfovibrio aerotolerans - Desulfovibrio carbinophilus - Desulfovibrio magneticus and Desulfovibrio idahonensis - Desulfovibrio mexicanus clades within the genus Desulfovibrio. A moderately acidophilic strain, Desulfovibrio sp. VK (pH optimum 5.7) and acid-tolerant Desulfovibrio sp. ED (pH optimum 6.6) dominated in the bioreactor consortium at different time points and were isolated in pure cultur
Effects of Spatial Dispersion on Reflection from Mushroom-type Artificial Impedance Surfaces
Several recent works have emphasized the role of spatial dispersion in wire
media, and demonstrated that arrays of parallel metallic wires may behave very
differently from a uniaxial local material with negative permittivity. Here, we
investigate using local and non-local homogenization methods the effect of
spatial dispersion on reflection from the mushroom structure introduced by
Sievenpiper. The objective of the paper is to clarify the role of spatial
dispersion in the mushroom structure and demonstrate that under some conditions
it is suppressed. The metamaterial substrate, or metasurface, is modeled as a
wire medium covered with an impedance surface. Surprisingly, it is found that
in such configuration the effects of spatial dispersion may be nearly
suppressed when the slab is electrically thin, and that the wire medium can be
modeled very accurately using a local model. This result paves the way for the
design of artificial surfaces that exploit the plasmonic-type response of the
wire medium slab.Comment: submitted for publication, under revie
Experiments on Vortices in Rotating Superfluid 3He-A
A satellite peak has been observed in the NMR spectrum of rotating 3He-A; the peak intensity depends linearly on Ω at the high angular velocities, Ω=0.6−1.5 rad/s, needed to resolve it. The frequency shift of the satellite is independent of Ω. These results strongly suggest the existence of vortices in rotating 3He-A with the vortex density proportional to Ω. Another satellite peak also has been observed which probably is due to solitons.Peer reviewe
The effects of drainage and restoration of pine mires on habitat structure, vegetation and ants
Habitat loss and degradation are the main threats to biodiversity worldwide. For example, nearly 80% of peatlands in southern Finland have been drained. There is thus a need to safeguard the remaining pristine mires and to restore degraded ones. Ants play a pivotal role in many ecosystems and like many keystone plant species, shape ecosystem conditions for other biota. The effects of mire restoration and subsequent vegetation succession on ants, however, are poorly understood. We inventoried tree stands, vegetation, water-table level, and ants (with pitfall traps) in nine mires in southern Finland to explore differences in habitats, vegetation and ant assemblages among pristine, drained (30-40 years ago) and recently restored (1-3 years ago) pine mires. We expected that restoring the water-table level by ditch filling and reconstructing sparse tree stands by cuttings will recover mire vegetation and ants. We found predictable responses in habitat structure, floristic composition and ant assemblage structure both to drainage and restoration. However, for mire-specialist ants the results were variable and longer-term monitoring is needed to confirm the success of restoration since these social insects establish perennial colonies with long colony cycles. We conclude that restoring the water-table level and tree stand structure seem to recover the characteristic vegetation and ant assemblages in the short term. This recovery was likely enhanced because drained mires still had both acrotelm and catotelm, and connectedness was still reasonable for mire organisms to recolonize the restored mires either from local refugia or from populations of nearby mires.Peer reviewe
Ferromagnetic resonance in -Co magnetic composites
We investigate the electromagnetic properties of assemblies of nanoscale
-cobalt crystals with size range between 5 nm to 35 nm, embedded in a
polystyrene (PS) matrix, at microwave (1-12 GHz) frequencies. We investigate
the samples by transmission electron microscopy (TEM) imaging, demonstrating
that the particles aggregate and form chains and clusters. By using a broadband
coaxial-line method, we extract the magnetic permeability in the frequency
range from 1 to 12 GHz, and we study the shift of the ferromagnetic resonance
with respect to an externally applied magnetic field. We find that the
zero-magnetic field ferromagnetic resonant peak shifts towards higher
frequencies at finite magnetic fields, and the magnitude of complex
permeability is reduced. At fields larger than 2.5 kOe the resonant frequency
changes linearly with the applied magnetic field, demonstrating the transition
to a state in which the nanoparticles become dynamically decoupled. In this
regime, the particles inside clusters can be treated as non-interacting, and
the peak position can be predicted from Kittel's ferromagnetic resonance theory
for non-interacting uniaxial spherical particles combined with the
Landau-Lifshitz-Gilbert (LLG) equation. In contrast, at low magnetic fields
this magnetic order breaks down and the resonant frequency in zero magnetic
field reaches a saturation value reflecting the interparticle interactions as
resulting from aggregation. Our results show that the electromagnetic
properties of these composite materials can be tuned by external magnetic
fields and by changes in the aggregation structure.Comment: 14 pages, 13 figure
The chromatin remodeling factor ISW-1 integrates organismal responses against nuclear and mitochondrial stress
Age-associated changes in chromatin structure have a major impact on organismal longevity. Despite being a central part of the ageing process, the organismal responses to the changes in chromatin organization remain unclear. Here we show that moderate disturbance of histone balance during C. elegans development alters histone levels and triggers a stress response associated with increased expression of cytosolic small heat-shock proteins. This stress response is dependent on the transcription factor, HSF-1, and the chromatin remodeling factor, ISW-1. In addition, we show that mitochondrial stress during developmental stages also modulates histone levels, thereby activating a cytosolic stress response similar to that caused by changes in histone balance. These data indicate that histone and mitochondrial perturbations are both monitored through chromatin remodeling and involve the activation of a cytosolic response that affects organismal longevity. HSF-1 and ISW-1 hence emerge as a central mediator of this multi-compartment proteostatic response regulating longevity.Peer reviewe
Imaging the real shape of nanoclusters in scanning force microscopy
A quantitative comparison between experiment and theory is given for the constant height mode imaging of metal nanoclusters in dynamic scanning force microscopy. We explain the fundamental mechanisms in the contrast formation with the help of the system Pd/MgO(001). The comparison shows that the shape and size of nanoclusters are precisely imaged due to the sharpness of the tip’s last nanometer. This quantitative comparison proves our previously proposed model for the contrast formation.Peer reviewe
- …
