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ABSTRACT

Since its inception, the field of neuroscience has studied the way the human brain
perceives and learns about its environment. Several theories have been created in
an effort to understand these phenomena and few have garnered as much interest
as Karl Friston’s free energy principle (FEP) [1] . The free energy principle states
that any self-organizing system that is at equilibrium with its environment must
minimize its free energy. The principle is essentially a mathematical formulation
of how adaptive systems (that is, biological agents, like animals or brains) resist
a natural tendency to disorder. Friston’s principle provides a framework that
explains not only how the brain functions, but how any stable system organizes
itself. Unsurprisingly a theory of this magnitude has created a lot of debate and
received fair share of criticism. Whether or not Friston’s principle is correct or
not, it has been proven to be a functional framework in the context of machine
learning.

The goal of this thesis is to provide an example of a practical implementation
of the FEP in the form of a Bayesian Neural Network (BNN), execute image
classification on it, and compare its performance to another neural network,
Convolutional Neural Network (CNN). Both of these networks are trained with
a few different datasets and we are comparing the accuracies and training times
of these networks.

We begin with an introduction to the key concepts that will help the reader
to better understand the topic of this paper. We then present some related work
on this topic and continue to introduce the architecture of the CNN and BNN
models. In the subsequent section we showcase the results of the training for both
the BNN and the CNN. We also provide an analysis of the results of the thesis and
discuss possible future work. The final conclusions section contains a summary of
the project. The results from the experiments suggest that a CNN is overall more
accurate in classifying images. This does not mean that a BNN is useless since the
BNN can express uncertainty which is something a CNN is incapable of.
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1. INTRODUCTION

This chapter is divided into three sections. Section 1.1 will explain Friston’s free energy
principle and how minimizing free energy relates to machine learning in general.
Section 1.2 introduces predictive coding and explains how it relates to our thesis
through variational inference. Section 1.3 will give a brief introduction to how neural
networks function and briefly compare the differences between the convolutional
neural networks (CNN) and the Bayesian neural networks (BNN).

1.1. The Free Energy Principle

The free energy principle (FEP) is a theory in cognitive science that was introduced
by the neuroscientist Karl Friston. The FEP states that any self-organizing system (i.e.
any dynamical system, and therefore any living or cognitive entity) equipped with a
Markov blanket – a statistical separation between internal and external states – can
be interpreted as performing Bayesian inference upon the surrounding environment,
such that its internal states come to encode probabilistic beliefs about the external
environment [2]. The FEP covers both living and non-living systems but our thesis
will explain the FEP from the perspective of a living system i.e the human brain. To
understand the concept of free energy better, we can divide reality into two different
states: the internal state and the external state. The internal state depicts all the things
happening within our brain and the external state depicts everything happening outside
of our brain (see Figure 1). There are two ways in which our brain and the external
world can communicate with each other. First one is through our senses. Our brain
receives information from world by observing it using our senses, for example by
seeing or hearing. The second one is by actions, for example moving our hand. The idea
is that our brain tries to model the world as accurately as possible from the observation
data it gets.

Figure 1. Free energy principle states
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According to the FEP, the brain models the world by minimizing free energy. The
brain predicts the next states of the external world using all the input data it has
gotten through observations. Mathematically speaking, minimizing free energy means
minimizing the prediction error between these predicted states and the actual states of
external world [3]. We can think of this error as "surprise"that the brain minimizes by
correcting its model of the world.

Accuracy is the expectation of log-likelihood with respect to the approximate
posterior, which represents reconstruction of the observation with the approximate
posterior. Complexity is the Kullback-Leibler divergence between the approximate
posterior and the prior, which serves to regularize the model. Importantly, in
maximizing the lower bound, the interplay between these two terms characterizes how
the model behaves in learning and prediction [4].

1.2. Predictive Coding

Predictive coding is a theory in computational neuroscience which proposes that the
core function of the brain is to minimize prediction error between predicted inputs
and actual inputs that the brain received [5]. The theory also states that the brain is
constantly generating and updating a model of its environment using the comparison
results in the prediction error. The theory of predictive coding has its roots in Hermann
von Helmholtz’s theory of unconscious inference which states that "perception is
indirectly influenced by inferences about current sensory input that make use of the
perceiver’s knowledge of the world and prior experience with similar"[6]. While
Predictive coding as a neuroscientific theory originates in the 1980s and 1990s from
the work of people such as Rao & Ballard, it was first developed into its modern
mathematical form of a comprehensive theory of cortical responses in the mid 2000s
by Karl Friston. [5]. The initial works of Rao & Ballard and Friston have been
significantly improved on with newer extended theoretical and mathematical models
of predictive coding and empirical testing [5]. However, the predictive coding theory
still has many unsolved problems that don’t seem to fit with the current framework
[5]. Research on predictive coding has not yet provided us with a unifying theory for
cortical function but what it has produced is a mathematical framework in the form of
the variational inference algorithm.

Variational inference itself is a term used to describe a family of methods which has
been developed in both machine learning and statistics. K. Friston [7] recognized that
the predictive coding algorithm could be cast as an approximate Bayesian inference
processed based upon Gaussian generative models. In general, variational inference
approximates an intractable inference problem with a tractable optimization problem.
We can better demonstrate variational inference through an example.

Let us assume that we have weights w and data D. We wish to find out the value
for our weights for the current data. We can get this conditional probability using the
Bayes’ theorem p(w|D) = p(D|w)p(w)

p(D)
The prior in the denominator is also known as the

normalizing factor and it can be written as p(D) =
∫
p(D, w) dw. In general, there is no

efficient algorithm for calculating this integral meaning it is intractable. The intractable
denominator makes the calculation of the conditional probability into an intractable
problem. This is where variational inference steps in. Instead of trying to solve the
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conditional probability we can approximate it with another posterior qθ(w|θ). q is a
variational distribution than can be chosen by the person making the approximation.
For this example we will assume qθ(w|θ) has a Gaussian distribution. The parameters
θ = {µ,Σ} are the mean µ and variance Σ of the Gaussian distribution. Now our task
is to minimize the divergence between the true and approximate posteriors with respect
to the Gaussian distributions mean and variance. This problem can be written as

θopt = argmin
θ

Dkl[qθ(w|θ)||p(w|D)]

where Dkl[q|p] is the Kullback–Leibler divergence between the true and approximate
distributions. By applying Bayesian rules to the true posterior of the problem and using
some properties of logarithms one can rewrite the equation to the form of free energy

F(D, θ) = Dkl[q(w|θ)||p(w)]− Eq(w|θ)[log p(D|w)] (1)

F(D, θ) = Free energy
Dkl[q(w|θ)||p(w)] = The complexity term
Eq(w|θ)[log p(D|w)] = The Accuracy term
q(w|θ) = An approximation of the true distribution
p(w) = The prior probability
(D|w) = The data dependent conditional probability

Accuracy is the expectation of log-likelihood with respect to the approximate
posterior, which represents reconstruction of the observation with the approximate
posterior. Complexity is the Kullback-Leibler divergence between the approximate
posterior and the prior, which serves to regularize the model. Importantly, in
maximizing the lower bound, the interplay between these two terms characterizes how
the model behaves in learning and prediction [4]. From this point forward one could
start optimizing the equation and there are many ways this can be done [8].

Even though this form of the equation can already be optimized, one can further
simplify the equation by making two additional assumptions [5]. Firstly we need to
assume that the generative model takes a Gaussian form meaning

p(D, w) = p(D|w)p(w) = N (D; f(θ1w),Σ1)N (w; g(θ2µ),Σ2)

The mean of the likelihood Gaussian distribution is assumed to be some function f
of the weights w, which can be parameterized with parameters θ, while the mean of
the prior Gaussian distribution is set to some function g of the prior mean µ. The
variances of the two gaussian distributions of the generative model are denoted Σ1

and Σ2. Secondly, we assume that the variational posterior is a dirac-delta distribution
q(w|θ) = δ(w − µ). Now that we have made these assumptions, we can decompose
the free energy equation to ’Entropy’ and ’Energy’ terms [3]

F (D, θ) = Eq(w|θ)[ln(q(w|θ))] + Eq(w|θ)[ln(p(θ, w))]
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where the first term is ’Entropy’ and the second term is ’Energy’. Because of the second
assumption we made, we can ignore the ’Entropy’ term and since the entropy of a
dirac-delta distribution is zero. Now we can write ’Energy’ in the following way.

Eq(w|θ)[ln(p(θ, w))] = Eδ(θ−µ)[ln(N (D; f(θ1w),Σ1)N (w; g(θ2µ),Σ2))]

= ln(N (D; f(θ1w),Σ1) + ln(N (w; g(θ2µ),Σ2))

= −(w − f(µ, θ1))
2

2Σ1

− ln 2πΣ2 −
(µ− g(µ, θ2))

2

2Σ2

− ln 2πΣ1

= −1

2
[Σ−1

1 ϵ2θ + Σ−1
2 ϵ2w + ln 2πΣ1 + ln 2πΣ2]

(2)

In the second to last line of the Equation (2) we have two similar terms so we note
these terms with new variables ϵw = µ − g(µ, θ2) and ϵθ = θ − f(µ, θ1). These new
variables are the prediction errors of the equation. From this point forward we can
begin the optimization of the variational free energy by using gradient descent. Using
gradient descent we can update the variables (µ, θ1, θ2). Gradient descent is explained
in Section 1.3.

1.3. Neural Networks

A neural network is a machine learning model and a key concept in deep learning.
A neural network is formed from a given amount of input nodes, hidden layers with
a given number of nodes within them, and an output layer with a given amount of
output nodes that represent the number of possible outcomes the network is expected
to produce (see Figure 2). A node is essentially a mathematical function that gives a
specific output, or ’activation’ with the given inputs, which are all affected by a factor,
also known as weight of the connection. All the nodes from a layer are connected to the
nodes of the previous layer, with all connections having individual weights assigned to
them. These weights are what make certain nodes activate when presented with data
they can recognize, eventually giving a true output at the output nodes.
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Figure 2. Schematic layer structure in neural networks

A neural network can learn the correct values for the weights in the process of
training. In training, the neural network is given a sample from a set of data that it
will use to adjust the weights. These sets of data including the corresponding expected
outputs are called datasets. Datasets are separated into smaller subsets. Each of these
subsets are used only for a single task for example training data is used only during the
training process.

For instance, imagine a CNN that is trying to recognize handwritten numbers from
images. At the time of the training the network, it is shown images of handwritten
numbers (training data), and it starts guessing which numbers they are. After each
image, the network generates different levels of activation for each node, these are then
adjusted using the weights of the connections, in a way that all the wrong outputs are
adjusted towards a smaller activation, while the right output is adjusted towards a larger
activation. This is done through a process called backpropagation. Backpropagation is
an algorithm which goes through the neural network starting from the output nodes
and adjusting the weights of the connections by computing the gradient of a loss
function with respect to the weights. The loss of a neural network is a metric which
we can use to evaluate the performance of the neural network during training. A loss
function is method that is used to quantify the performance of the neural network
by summing up the overall error between the observed and predicted values. Loss
functions can roughly be divided into two categories, regression loss and classification
loss. In classification our goal is to predict a discrete class output whereas in regression
the output is continuous in nature. The training process can be considered complete
when additional observations of data does not significantly reduce the amount of error.
After the training, the performance of the network can be evaluated using testing data
which is one of the subsets from the larger dataset. If the training has been successful,
the neural network should be able accurately categorize handwritten numbers from the
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testing data. The accuracy of the networks predictions is a metric that can be used to
measure the networks performance after training.

Inspired by predictive coding, we decided to research the inner workings of Bayesian
neural networks and compare their performance to the performance of more traditional
neural networks. Therefore, our thesis will mainly focus on two different types of
neural networks. The chosen neural networks are a Convolutional neural network
(CNN) and a Bayesian Convolutional neural network (BNN). The most notable
difference between these two neural networks is that a CNN has single floating-
point values as weights, whereas in a BNN, these values are replaced with probability
distributions. A more detailed description of both networks can be found in Chapter 3.
For this study, we chose to compare the performance of a CNN and a BNN on specific
learning tasks. This choice was motivated by the fact, that CNNs are arguably the
most popular in tasks like image classification and have been proven to have great
performance in them. [9]. A BNN was chosen for this study because of its connection
to predictive coding.

1.4. The Relationship Between Predictive Coding and BNN

The connection between predictive coding and the BNN can be found in variational
inference. BNNs can use variational inference to infer distributions for the model
weights. A more in depth explanation of the BNN can be found in Section 3.2. It
is possible to make the same assumptions that were made for Equation 2 so that the
BNN functions in a way that resembles predictive coding [10][11]. However, Bayesian
inference needs to be adjusted for deep learning. The main reason for this is that
approximating the posterior in BNNs can be fairly computationally expensive. The use
of Gaussian approximating distributions increases the number of model parameters
considerably, without increasing model capacity by much. This increased amount in
model parameters makes the Bayesian neural network scale poorly to large dataset
and network sizes [11]. Several different approaches have been proposed to make
Bayesian inference more suitable for deep learning purposes, such as probabilistic
backpropagation [11] and Bayes by Backprop [12]. Our BNN utilizes Bayes by
Backprop and an in depth explanation for it can be found in Section 3.2.1. Using the
Bayes by Backprop algorithm has the added benefit that the algorithm is very similar
to the classical training loop for point estimate deep learning, most techniques used for
optimization in deep learning are straightforward to use for Bayes-by-Backprop [8].
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2. RELATED WORK

In this section six papers relating to the subject matter of this thesis will be summarized
to give readers a more complete picture of the current state of the field.

2.1. Applications of the Free Energy Principle to Machine Learning and
Neuroscience

In his thesis, Millidge comprehensively explores the free energy principle and its
applications in both machine learning and neuroscience [13]. The thesis is separated
into three sections.

The first section contains chapters 2 and 3. In Chapter 2, Millidge gives a detailed
overview of the free energy principle, starting from first principles, and including a
discussion of the mathematical assumptions and he provides some of his opinions
on the philosophical nature of the theory and its potential utility. He also gives a
brief walk-through of discrete state space active inference [14] which is the focus
of the ‘scaling up’ work in Chapter 4. In Chapter 3, Millidge deals principally with
models of perception and predictive coding. He begins by giving a brief overview
and mathematical walkthrough of predictive coding theory. He then covers in depth
two contributions to the theory of predictive coding. First, he presents work where
he scales up and empirically test the performance of large scale predictive coding
networks on machine learning datasets. He also clarifies the relationship between
predictive coding and other known algorithms such as Kalman filtering. Secondly,
Millidge discusses relaxing various relatively un-biologically plausible aspects of the
predictive coding equations, such as the need for symmetric forward and backwards
weights, the necessity of using nonlinear derivatives in the update rules, and the one-
to-one error to value neuron connectivity required by the standard algorithms. Then,
in Chapters 4 and 5, Millidges presents his work on the applications of the free energy
principle to questions of action selection and control. Chapter 4 focuses predominantly
on scaling up active inference methods to achieve results comparable to those achieved
in the deep reinforcement learning literature, while Chapter 5 takes a more abstract and
mathematical approach and investigates in depths the mathematical origin of objective
functionals which combine both exploitatory and exploratory behaviour – an approach
which has the potential to finesse the exploration-exploitation dilemna [15].

Finally Millidge discusses the the most important and solvable questions within his
field and he argues that his work has answered some of these questions. In Millidge’s
opinion the greatest question still remains which is how can credit assignment be
implemented in the brain? And, specifically, whether and how the brain can implement
the backpropagation of error algorithm.

2.2. Deep Predictive Coding Networks For Video Prediction And Unsupervised
Learning

This study is about implementing a predictive neural network that tries predicts future
frames in a video [16]. It is based on a previous work on the same topic [17], but this
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study adds a predictive coding aspect into it. In the second chapter the structure of
the predictive neural network is introduced. Their model is called "PredNet"and the
architecture of this model is based on the predictive coding model proposed by Rao
and Ballard in 1999 [18]. The network is built by modules that are each divided into
four layers. There is a representation layer Rl, which utilises a recurrent convolutional
network to generate a prediction of the next frame. The second layer is the prediction
layer, and it is called Al1. The third layer Al2 is the layer for the actual frames. The
final layer El outputs the difference between predicted frame and the actual frame. The
difference is calculated using the layers Al1 and Al2. This error is then passed to a Al2

and incorporated into the next input Al2+1.
In the third chapter the authors tested this model by training it with a data consisting

of synthetic images. The data contained sequences of ten frames of face rotating to
a certain direction. The model attempted to predict the next frame in each of these
sequences and it managed to do it with a decent accuracy. For comparison, this same
learning task was carried out with a variant of the Ladder Network [19] and a standard
autoencoder. When comparing the results, it turned out that this PredNet model was
more accurate on predicting future frames than the standard autoencoder or the Ladder
Network.

The next step was to test the model with real-world images. The training data
consisted of raw videos recorded with a car-mounted camera. The data was further
divided into a few different categories and sampled to sequences of 10 frames. The
PredNet model predicted future frames fairly accurately. The same learning task was
carried out also with CNN-LSTM Encoder-Decoder and with a very simple model that
simply copies the last frame to be the next prediction. The CNN-LSTM (Long Short-
Term Memory) Encoder-Decoder is a control model that shares the overall architecture
and training scheme of the PredNet, but that sends forward the layer-wise activations
Al rather than the errors El. Once again, the accuracy was best with PredNet model.
In conclusion, this study demonstrates that predictive coding neural networks can be
relatively effective in image classification-like scenarios.

2.3. Hands-On Bayesian Neural Networks -- a Tutorial for Deep Learning Users

The tutorial by Jospin et al. [20] gives an overview of Bayesian neural networks.
In the first three sections of the paper Jospin et al. give a clear and concise

explanation of what exactly is a Bayesian neural network, why a Bayesian model
is being researched and what are its benefits. Jospin et al. define the BNN as a
stochastic artificial neural network trained using Bayesian inference. Stochasticity
means that the network has either stochastic activation functions or stochastic weights.
The Bayesian model is being researched because the modern deep learning methods
function as black boxes and the uncertainty associated with their predictions is often
challenging to quantify. One of the main benefits of the BNN is that it provides
a natural approach to quantify uncertainty. The fourth and fifth section go more
in detail about the design choices that need to be made when building a Bayesian
neural network. The fourth section shows how to design the stochastic model for the
network and how certain choices affect degree of supervision of the model. The fifth
section gives five algorithms that can be used to calculate an approximation for the
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solution of the Bayesian theorem for our data. The final section gives ways to evaluate
the performance of the Bayesian neural network. This mainly happens through the
assessment of the calibration curve with various methods. In addition to the tutorial
Jospin et al. provide supplementary material where three problems are solved using
different variants of the Bayesian neural network architecture. The source codes for
these solutions are also provided through GitHub.

2.4. A Comprehensive Guide to Bayesian Convolutional Neural Network with
Variational Inference

Convolutional neural networks are widely used in image classification, and they are
generally presumed to perform well in recognizing patterns in images. In fact, best
CNNs can already outperform humans in this area [21]. Even though CNNs are
proven to be good at image classification tasks, they have a number have couple of
major downsides. The first downside is that training CNN with a small dataset tend
to cause overfitting. This means that the model is too detailed to this specific data
and thus might not work that well with more general data. This causes the network
to make over-confident decisions. The second problem CNNs have is the lack of an
uncertainty measure in its predictions. This study tries to overcome these problems by
introducing Bayesian learning and the usage of variational inference in convolutional
neural networks.

The basic idea of this approach is to replace the single-point estimated weights in
a CNN with probability distributions. The Bayesian approach of using distributions
allows the model to express uncertainty and averages out the parameters, which helps
preventing overfitting.

The architecture for the Bayesian CNN used in this study is based on an
algorithm called Bayes by Backprop [22] [12], (see Section 3.2.1). Since the
true probability distributions p(w|D) in Bayesian inference are intractable this
study approximates them with variational probability distributions qθ(w|D). These
approximated distributions contain the same parameters as a Gaussian distribution,
mean µ and variance σ2. The second chapter focuses on key concepts. Most of the
key concepts are already covered in our thesis and we skip the details for now. See
Chapter 3 for more detailed explanations of the models.

How does one replace the single-point estimates with probability distributions? A
regular CNN calculates the values for the weights with a single convolutional operation
but in order to construct variational posterior probability, we need two separate values,
mean and variance. With the help of local reparametrization trick (see Section 3.2.2)
the network can calculate values for mean and variance form the outputs of our two
convolutional operations. The output of the first convolutional operation is treated as
in a regular CNN to provide a value for the mean µ. In the second convolutional
operation we will learn the value for α which can be used with the mean to calculate the
value for variance via the formula: σ2 = αµ2. These parameters define the variational
distribution qθ(w|D).

qθ(w|D) = N(µ, σ2)
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The last few chapters of this study document the tests the author carried out with their
Bayesian and Non-Bayesian models. They applied these models to two architectures
(AlexNet and LeNet-5) and compared their performances in different scenarios. They
tested these networks with learning tasks related to image recognition, image super-
resolution and Generative Adversarial Networks [23]. Image super resolution is the
task of recovering a high-resolution image from a given low-resolution image. The
results show that Bayesian CNN is comparable with a regular CNN. The BNN achieved
a comparable validation accuracy to the CNN in image classification. The BNN was
also able to achieve results that are comparable in terms of the number and the quality
of the image generated in the image super-resolution task. In the final experiment
the authors created a Bayesian DCGAN [24] that they then compared to the original
DCGAN. The Bayesian had a significantly higher loss than the authors anticipated but
according to the authors, there is no comparison that can be drawn from the results
of the two networks. Since GANs are difficult to anticipate just by the loss number, a
comparison cannot be made.

2.5. Practical Deep Learning with Bayesian Principles

One of the greater issues that the Bayesian neural networks face is the lack scalability.
The task of accurately approximating a posterior distribution is very difficult which
is the reason why Bayesian neural networks scale poorly to large datasets such as
ImageNet. In this study Osawa et al. demonstrate practical training of deep networks
with natural-gradient variational inference. They do this by implementing a new
optimizer called the Variational Online Gauss-Newton (VOGN) method which was
developed by Khan et al. [25]. The VOGN requires lower memory, computation,
and implementation effort than existing VI methods and the VOGN takes a form
similar to the more commonly known ADAM optimizer which allows Osawa et al.
to borrow existing deep learning techniques to further improve the performance of
their training. The first method they use is batch normalization in which BatchNorm
layers are inserted between neural network layers. These layers help stabilize each
layer’s input distribution by normalizing the running average of the inputs’ mean
and variance. The second method they used was data augmentation and more
specifically random cropping and horizontal flipping. Unlike the batch normalization,
data augmentation could not be implemented without making any changes. Using data
augmentation resulted in slightly worse performance than expected, and it also affected
the calibration of the resulting uncertainty.

In the experiment portion of the paper, they compare the performance of three
separate CNN architectures, these architectures being the AlexNet, LeNet-5, and
ResNet-18. They found that the networks that use VOGN were the best or tied on best
on ten of the fifteen metrics that they used for performance evaluation. In conclusion,
they found that the networks that used VOGN had accuracies and convergence rates
comparable to the networks that use SGD and Adam. In addition to this, the VOGN
retains a well calibrated uncertainty and good performance on out-of-distribution data.
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2.6. Bayesian Convolutional Neural Networks with Variational Inference

In his report Yi-Pei Chan reproduced the Bayesian LeNet model from [21]. He tested
his network on image classification task with the MNIST, CIFAR-10, and CIFAR-
100 datasets. Chan then compared the performance of his Bayesian LeNet and the
original LeNet networks to the to the results found in [21]. Chan’s models performed
worse than the models in the original study[21] and Chan speculates that this might be
because he needs to make initialization for the mean and variance parameters in the
variational posterior probability distribution, and bad initialization values may result
in longer convergence time to the optimum solution.
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3. NEURAL NETWORKS

In this section we will briefly explain how a convolutional neural network functions
and introduce the CNN model we are using in this thesis. We will also explain how the
Bayesian neural network functions, introduce its architecture, and discuss the choices
that were made when implementing the network.

3.1. Convolutional Neural Network

In Chapter 1, we gave a quick rundown on how neural networks function. The type of
the described neural network is called a feedforward neural network. The two features
to remember from this network are that data only travels to one direction and that all
the nodes from a layer are connected to the nodes of the previous layer. This is a good
general-purpose architecture that has its strengths and weaknesses. A major weakness
of a feedforward neural network is the lack of scalability when classifying images.

For example, assume we have a 100x100 pixel black and white image. In a
feedforward network, the grid of pixels in the image would be converted into a 10
000-input node column and these nodes would be connected to each of the nodes in
the first hidden layer. Each of these connections would have a weight that needs to be
estimated. If the first hidden layer has ten nodes, this means that we need to estimate a
total of 10 000 weights * 10 nodes = 100 000 weights with each backpropagation step.
This is a significant computational load even though a 100x100 image is very small
when compared to images encountered in real world applications, and a hidden layer
with 10 nodes is relatively small.

The first layer after the input layer in a CNN is called the convolutional layer and it
begins processing the image by applying a filter to the grid of pixels. As an example,
we can determine a filter as a 3x3 array with random pixel values that are later updated
using backpropagation. The filter is convolved with the input grid of pixels and the dot
product of the convolution is inserted into a feature map. This gets repeated until the
filter has convolved with every pixel in the image. A visual representation of this can be
seen in Figure 3. After the convolutional layer comes a pooling layer where a new filter
is applied to the feature map. This filter takes the maximum value out of the area where
it is currently being applied and adds it to the input grid of values. After every pixel has
been processed, the input grid values are converted into a column which is fed into the
fully connected layer that has an activation function. The column that is fed to the third
layer is significantly smaller than the column that we had in the example above, and
that is why a CNN scales up much better than a feedforward network. From the fully
connected layer we will get the networks’ prediction for the class of the image. Just
like with the feedforward network, we can now backpropagate in the CNN to update
all of the weights after which the entire training process is repeated.
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Figure 3. Convolutional layer filter, source [26]

This is about the simplest architecture a CNN can have, but it demonstrates well
how even the larger networks’ function. In addition to having good scalability, a CNN
has other benefits. Firstly, it can utilize the correlation that happens in more complex
images and secondly its performance is not severely affected by pixel shifts in the
input images. The input images can also be subsampled or scaled without it affecting
the end result. This means that we can further reduce the number of parameters that
the network needs to evaluate. Overall, a network as simple as this can perform well
and it can also be improved quite easily. One of the most common ways to improve
a basic CNN is adding more depth to the network, which means adding additional
convolutional and pooling layers before the fully connected layers. Networks that have
a large number of layers are often referred to as deep convolutional neural networks
and their architectures have been very successful in image recognition [27].

The CNN that we use in our thesis is called AlexNet [28]. AlexNet won the
ImageNet Large Scale Visual Recognition Challenge in 2012 and it is considered to
be a breakthrough network that brought significant amount of new interest in CNNs.
We chose this network for two reasons. Firstly, the network is already implemented in
the source code that we acquired from [21]. Secondly, it represents a well-known and
performing network that has a very simple design when compared to the networks that
currently perform the best. The Bayesian neural network in our thesis will also use the
architecture of AlexNet.

Figure 4. AlexNet architecture

3.2. Bayesian Neural Networks

How does the Bayesian Neural Network (BNN) model differ from the CNN model?
In a BNN, the main difference can be found in the way the weights of the connections
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work. In a CNN the weights are calculated by computing the gradient of the loss
function, and are given a floating-point value, whereas in a BNN, the weights are
given a probability distribution, with the help of Bayes’ theorem, (see Figure 5). Also
all the values in the filters are replaced with a distribution. All of these distributions
are Gaussian because it can be easily represented with just a two values, mean and
variance. In practise this means that every time a CNN learns or updates a value in the
weights, a BNN has to learn or update two values. This can be done by applying two
consecutive convolutional operations. The output of the first convolutional operation
is treated as in a regular CNN to provide a value for the mean µ. In the second
convolutional operation we will learn the value for α. After that the value for variance
can be calculated via the formula: σ2 = αµ2.

As stated in Section 1.2, calculating the probability with Bayes’ theorem gives
us an integral that is intractable, which is why a BNN uses variational inference to
approximate the posterior with another distribution, trying to minimize the distance
between them. Unlike a CNN, a BNN is also able to express uncertainty, because of
the probability distributions. This means that in a way, a BNN has a way to say, "I
don’t know", when presented with data that is outside the scope of its training, e.g. an
image of white noise instead of an object which the network has had training on.

Figure 5. Demonstration of how CNN and BNN differ from each other with exemplary
filter and input pixel values.

In this thesis we are going to utilize the neural network models that were
implemented by Shridhad et al. in their paper [21]. The authors implemented three
different CNN’s that they then converted into bayesian neural networks. In this
thesis we use the AlexNet versions of these CNN and BNN models and we focus
on comparing the results from these two networks. Next we will explain three key
concepts that are specific to the BNN. The first is Bayes by Backprop which is the
way our BNN utilizes Variational inference. The second is a local reparametrization
trick which significantly improves the performance of the BNN model. The last one,
weights pruning, is a deep learning method that is used to reduce the amount of valued
parameters in a model.
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3.2.1. Bayes by Backprop

The main idea of the Bayes by Backprop method is to solve a fundamental
problem associated with Baysian CNNs. In order to update the weights during the
backpropagation process, one needs to calculate the gradients of the loss fucntion.
The loss function our Bayesian model uses, also known as variational free energy, is
intractable because the KL-divergence term can not be computed. The formula for our
loss function is as follows

F (D, θ) = Dkl(qθ(w|D)||p(w))− Eqθ(w|D)[log(p(D|w))],

where D = data, θ = parameters mean and variance, qθ(w|D) = approximated
probability distribution for weight w given data D, p(w) = the real probability
distribution for weight w and Eqθ(w|D)[log(p(D|w))] is the accuracy term. By further
expanding the KL-divergence term

Dkl(qθ(w|D)||p(w)) =
∫

qθ(w|D) log
(qθ(w|D)

p(w|D)

)
dw,

we can see that this term is calculated using an integral, which makes it intractable.
To solve this problem we have to use Bayes by Backprop, a method introduced by

Blundell (2015) [12]. The main point of this method is to estimate the loss function
with a tractable equation which makes the backpropagation process possible. Let us
start by changing the form of our KL-divergence term. In general, expected value for
a continuous random variable X is calculated in a following way

E[X] =

∫
xf(x)dx

With this formula we change the form of our KL-divergence term.

∫
qθ(w|D) log

(qθ(w|D)

p(w)

)
dw = Eqθ(w|D)

[
log

(qθ(w|D)

p(w)

)]
After that we can use the rule of logarithm to further modify this equation. The rule
states that

equ

log
(a
b

)
= log(a)− log(b)

⇒ Eqθ(w|D)

[
log

(qθ(w|D)

p(w)

)]
= Eqθ(w|D)[log(qθ(w|D))− log(p(w))]

Now we can insert these experssions into the original loss function.
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F (D, θ) = Eqθ(w|D)[log(qθ(w|D))− log(p(w))]− E(qθ(w|D)[log(p(D|w))]

We can further modify this equation by combining the two expectation terms using
following formula

E[X] + E[Y ] = E[X + Y ]

⇒ F (D, θ) = Eqθ(w|D)[log(qθ(w|D))− log(p(w))− log(p(D|w))]

The next step is to do a reparametrization trick. It has two steps, the first one being
a change of variables. Let us define a variable w(i) which will be used as an estimation
for w. Our new variable is declared as a function

w(i) = g(θ, ϵ) = µ+ σϵ, (3)

here θ = (µ, σ2) where µ and σ2 are the mean and variance of the variational posterior
qθ(w|D) and ϵ is sampled from a normal distribution p(ε) ∼ N(0, 1). This gives us a
way to sample values from variational posterior qθ(w|D).

The second step in reparametrization trick is known as the Law Of The Unconscious
Statistician (LOTUS). It proposes that if we know a base distribution ϵ ∼ p(ε) and
want to know the expectation for w(i), we can actually use the base distribution to
calculate the expectation for w(i) since w(i) is a fucntion of ϵ. Here is a demonstrative
example with more general variables. Let us say that we have a continous variable X
which is defined with a distribution pθ(x). The expected value for X is calculated in a
following way

Epθ(x)[X] =

∫
xpθ(x)dx

If we now have a new variable Y which is is defined with a distribution pϕ(y) and is
also a function of variable X . The expected value for Y would be

Y = f(X)

Epϕ(y)[Y ] =

∫
ypϕ(y)dy

Instead of calculating the expected value for Y in this way, according to the LOTUS we
can use the base distribution for calculating Epϕ(x)[Y ] since Y is a function of variable
X .

⇒ Epϕ(x)[Y ] = Epθ(x)[f(X)] =

∫
f(x)pθ(x)dx

Let us now apply this reparametrization trick into our loss function. First we sample
w(i) using the parameters of our variational posterior qθ(w|D) and update the loss
function.
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F (D, θ) ≈ Eqθ(w(i)|D)[log(qθ(w
(i)|D))− log(p(w(i)))− log(p(D|w(i)))]

Since w(i) is a function of ϵ, according to the LOTUS we can calculate Eqθ(w(i)|D) as
Ep(ϵ).

F (D, θ) = Ep(ϵ)[log(qθ(w
(i)|D))− log(p(w(i)))− log(p(D|w(i)))]

To estimate this we can use Monte Carlo sampling

F (D, θ) ≈ 1

N

N∑
i=1

log(qθ(w
(i)|D))− log(p(w(i)))− log(p(D|w(i))) (4)

and finally we end up with a completely tractable equation. Using this as our
loss function solves the problem we had with backpropagation. This is how
Bayes by Backprop basically makes applying Bayesian learning to larger models
computationally possible.

3.2.2. Local Reparametrization Trick

There is still one problem with our model. When calculating the stochastic gradients,
the variance of the gradients are crucial for the performance of the process. Let us take
a closer look into this problem by demonstrating the reparametrization with the log
likelihood term. We can assume that our KL-divergence term from Equation 4, which
is currently

log(qθ(w
(i)|D))− log(p(w(i))),

can be approximated with a similar reparameterization as the log likelihood term. Let
us denote the log likelihood as Li = log(p(D|w(i))). By applying the Monte Carlo
sampling to it we end up with LD = 1

N

∑N
i=1 Li. Let us now calculate the variance for

this term.

Var[LD] =
1

N2

( N∑
i=1

Var[Li] + 2
N∑
i=1

N∑
j=i+1

Cov[Li, Lj]
)

=
1

N
Var[Li] +

N − 1

N
Cov[Li, Lj] (5)

Hence with even a moderately large N the variance depends almost completely on the
covariance. This can cause some problems, e.g. the gradient descent is very slow with
a large variance.

The Local reparametrization trick [29] solves this problem by proposing an estimator
for the variance, where Cov[Li, Lj] = 0. Applying this into Equation 5 crucially
changes it and we end up with a new equation

Varest[LD] =
1

N
Var[Li]
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This estimation basically scales the variance as 1/N . In general situations, if w(i) is
defined through some function, e.g., f(ϵ), then ϵ only influences LD through that
function. In order to make this estimation computationally even more efficient, we
will not sample ϵ directly. Instead we only sample the intermediate variables f(ϵ) that
influence LD. This basically translates the global uncertainty in the weights into a
local uncertainty, yielding a computationally and statistically very efficient gradient
estimator.

In our BNN model, the only way the weights w(i) affect the expected log
likelihood is through the layer activations b [29]. This allows us to utilize the Local
reparametrization trick in our equation. Instead of sampling the weights w(i), we
sample neuron activations b = AiW , where Ai is the input feature map from previous
layer and W is the weight matrix of our current layer. The variational posterior is
translated into qθ(bj|Ai) and we can calculate values for activations b with a following
equation [30]

bj = AiW = Ai ∗ µi + ϵi ⊙
√
A2

i ∗ σ2

σ2 = αi ⊙ µ2
i ,

where ⊙ denotes component-wise multiplication and ∗ denotse the convolutional
operation. Bayes by Backprop is still the most important thing that makes our BNN
model computationally efficient, but the local reparametrization trick also helps in
enhancing the performance of this model.

3.2.3. Model Weights Pruning

One of the consequences of replacing the floating-point values with probability
distributions is that the number of parameters in the model is doubled. For every
connection between nodes, also known as the weight, two values are calculated instead
of just one: mean and variance. This makes the comparison between the CNN and BNN
models a bit unfair since the BNN has a twice the number of parameters compared to
the CNN. In order to make the comparison fair, we reduce the number of parameters
by pruning the BNN model. By cutting the number of filters in each layer in BNN to
half, the total number of parameters will be the same in both models.
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Figure 6. Illustration of model weights pruning, source [31].

In addition, both of the CNN and BNN models use model weight pruning as a way
to reduce the sparsity in the networks’ matrices. In other words, model pruning reduces
the number of valued parameters in the network, without a major effect in the accuracy
of the model. Reducing the amount of valued parameters in the network helps reduce
the size of the model, thus reducing memory usage, computational cost and run-time.
Model weights pruning is achieved by mapping low contributing weights to zero and
reducing the number of non-zero valued weights.

Theoretically, this is done by applying a L0 norm, which is a selector that assigns
non-zero values to features that are important. Since the L0 norm is non-differentiable,
our model uses an approximation of L0, noted by L1. L1 works by making a large
amount of coefficients equal to zero, hence working as a regularizer and a practical
feature selector for our network.[21]
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4. EXPERIMENTS

This chapter will give an overview about our experiments. First, we will briefly explain
our testing plan and give a short introduction to all the datasets used in the experiments.
Then we will go over all the experiments and show the results from them.

4.1. Testing Plan

Our objective is to train a CNN and a BNN with three different datasets and analyze
the performance of the networks from the data that is collected during the training and
testing of these networks. The first dataset we consider is CIFAR10, which represents a
common dataset that is used to evaluate the performances of CNNs. Our second dataset
is called fruits-360, this was chosen because it can be easily edited to suit our needs
and because it is a good alternative to CIFAR10, since the photos are more uniform,
hence enabling better accuracy overall for the trained network. Our custom version of
fruits-360 is a smaller dataset with a total of 6502 images. Our third dataset is MNIST,
which contains grayscale images of handwritten numbers from 0 to 9. MNIST was
chosen because with it, neural networks are known to achieve high accuracy in many
different types of architechtures of neural networks, which is needed to showcase the
proper uncertainty ratings of the BNN.

An epoch is a step in training a neural network, where all of the training data is
fed through the network once, including adjusting the weights between the nodes with
backpropagation. Our tests will consist of measuring the time it takes to complete one
epoch and the whole training of the model, which is equal to 200 epochs, for both
networks. During the training, the network tells its training and validation accuracies
after each epoch. Training accuracy tells the accuracy of the network when using the
images from the training data, and validation accuracy tells the accuracy of the network
when using images from a separate set of images, that are outside of the training data.
We will compare the validation accuracies over each epoch for both of the networks
for CIFAR10 and our version of the fruits-360 datasets. With the fruits-360 dataset we
will also measure how a decreased amount of data affects the accuracies and training
time of each network. With all of these tests we aim to show the performance of each
network in terms of accuracy, increase in accuracy relative to the number of epochs,
and time taken for each epoch. The last experiment will only be performed on the BNN
where we will train the network and see how it performs on classes it was not trained
on in addition to white noise. In this separate testing we will report both the mean and
standard deviation of the predictions so that we can better showcase the BNN’s ability
to express uncertainty.

Apart from the last experiment where we test the uncertainty ratings given by the
BNN, all of our tests were run 5 times to get an average of those tests. For example,
the first epoch accuracies where determined by a random value, so the networks could
start at an accuracy anywhere between 0.05 and 0.25, possibly even outside of those
values. This lead to us smoothing out the randomness of the results by training each
network for 200 epochs, and repeating it 5 times, where we could calculate a simple
arithmetic mean by getting the sum of the accuracies of each training session for each
epoch, and dividing it by the amount of training sessions, which was in our case 5.
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This gave us an accurate representation of how the accuracies developed throughout
the training by showing us an average value for each epoch instead of a value from one
single point in one of the training sessions.

4.1.1. CIFAR10

CIFAR10 is a dataset that consists of 60000 color images with 32x32 pixels that are
separated into 10 classes. The dataset has classes for common animals and vehicles
and each of the classes has 5000 images, the remaining 10000 images are reserved for
testing. The images in CIFAR10 have more variance in terms of the shapes present in
images between the classes, but also in the colours within the classes. As an example,
a car is vastly different in terms of its outer shape, when compared to a cat or a dog,
but also a car can be many different colors, but still be classified in the same class. This
provides a good counterbalance to our more uniform fruits-360 dataset.

4.1.2. Fruits-360

Fruits-360 is a publicly available dataset from Kaggle. The dataset contains 100x100
pixel RGB images of fruits and vegetables that are separated into 131 classes. The
dataset has 90483 images in total. We will utilize fruits-360 to create a custom version
of it, where we have 10 classes of fruits of our choosing, each having around 500
training images and 160 testing images per class. This comes out as 6502 images in
total, 4871 images for training and 1631 images for testing. Fruits-360 has a good
uniformity to the images, where each class has the fruits displayed in the same size,
with same photography conditions, such as lighting, background and so forth. The
fruits are photographed with slight differences in the angle of the fruit, capturing the
fruits shape and characteristics from every angle.

Figure 7. Example images of "Apple" class from fruits-360

4.1.3. MNIST

MNIST is one of the most common datasets used to test the accuracy of image
recognition neural networks. It is a dataset of 70 000 greyscale images of handwritten
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digits between zero and nine. The collection contains a training set of 60 000 images,
and a testing set of 10 000 images.

4.2. Performance of the Networks with CIFAR10 and Fruits-360

In this section we will go over the results we got from training our networks with
CIFAR-10 and fruits-360 datasets. The main focus is on the validation and training
accuracies.

Epoch BNN CNN
10 48.1% 55.3%
25 54.5% 60.7%
50 60.7% 64.0%
100 63.1% 65.9%
200 63.2% 66.2%

Table 1. Average validation accuracies for BNN and CNN from 5 tests with CIFAR10
dataset

Figure 8. Average validation accuracies for BNN and CNN from 5 tests with CIFAR10
dataset

Figure 8 shows the average validation accuracies of the models when trained with the
CIFAR10 dataset. The results strongly suggest that the CNN model is more accurate
overall. The final validation accuracies with 200 epochs are 66% for CNN and 63% for
BNN, the difference being no bigger than 3%, (see Table 1). In addition to the CNN
being more accurate at the end, the accuracy also increases slightly faster in the first
quarter of the epochs.
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Epoch BNN CNN
10 48.3% 55.5%
25 57.0% 64.3%
50 67.8% 70.1%
100 75.3% 77.6%
200 75.3% 78.7%

Table 2. Average training accuracies for BNN and CNN from 5 tests with CIFAR10
dataset

Figure 9. Average training accuracies for BNN and CNN from 5 tests with CIFAR10
dataset

Average training accuracies were also tracked for CIFAR10 and the results are
shown above in Figure 9. We can see that the training accuracies with CNN and BNN
behave in a same way as the validation accuracies, both models having about 12%
higher training accuracy than validation accuracy. CNN got average training accuracy
of 79% while BNN managed to get 75%, (see Table 2). The difference is about the
same compared to the corresponding validation accuracies.

Epoch BNN CNN
10 69.4% 91.3%
25 75.3% 98.9%
50 81.2% 99.9%
100 91.9% 99.9%
200 94.3% 99.8%

Table 3. Average validation accuracies for BNN and CNN from 5 tests with fruits-360
dataset
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Figure 10. Average validation accuracies for BNN and CNN from 5 tests with fruits-
360 dataset

Figure 10 shows the average validation accuracies of the models when trained with
the fruits-360 dataset. CNN shows better accuracy overall and a higher growth rate.
Similar behaviour was also found in CIFAR-10 results. With the BNN and the CNN,
the initial increase in accuracy stops after the first 10 epochs or so, at this point the
BNN manages to rise to an accuracy of 70%, while the CNN climbs up all the way to
around 95%. Main differences between the fruits-360 and CIFAR10 datasets are the
overall accuracy reached, and with the BNN, the validation accuracy does not show
signs of increasing after around 70 epochs with CIFAR10, whereas with fruits-360 it
seems to settle after 120 epochs to an accuracy of around 93-95%.

Epoch BNN CNN
10 68.5% 94.3%
25 77.8% 98.4%
50 84.5% 99.9%
100 91.0% 99.9%
200 94.7% 99.9%

Table 4. Average training accuracies for BNN and CNN from 5 tests with fruits-360
dataset
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Figure 11. Average training accuracies for BNN and CNN from 5 tests with fruits-360
dataset

Unlike with CIFAR10, the training accuracies are roughly the same with both the
CNN and BNN when compared to the validation accuracies, (see Table 3 and Table 4).
This is due to the fruits-360 having a less diverse set of images within and across the
classes than CIFAR10.

CNN BNN
Total time for 200 epochs 1607s 1612s
Average time per epoch 8.03s 8.06s

Table 5. Times for training with CIFAR10

CNN BNN
Total time for 200 epochs 5466 s 3897 s
Average time per epoch 27.33 s 19.48 s

Table 6. Times for training with CIFAR10 (CPU Only)

CNN BNN
Total time for 200 epochs 868 s 926 s
Average time per epoch 4.34 s 4.63 s

Table 7. Times for training with fruits-360

There is no significant difference in the training times of the models. Normally
the training time of a BNN should be twice as much compared to a CNN, since the
amount of parameters is doubled in a BNN, due to distributions needing to learn two
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values, the mean and the variance. In our case however, the BNN model is pruned
down by reducing the amount of filters in each layer to half. This means that the
amount of parameters is the same in both models, which causes the training times
to be about the same as well. The difference in training times of CIFAR10 and fruits-
360 is due to CIFAR10 being a larger dataset with more images, and also partly due to
the experiments being run on different machines.

One thing to note about the training times is that the networks were trained using
cuda cores from Nvidia GPUs to decrease the time it took to run the tests, but it also
affected the ratios between the networks when comparing to tests that were run purely
on CPUs. Table 6 shows a clear difference in the training times of the CNN and BNN
with the CIFAR10 dataset. In this case the BNN is 1569 seconds faster, which is nearly
a 30% difference. The efficiency of cuda cores can be noticed by the times being cut
in half or less when running the tests using cuda.

4.3. Reduced Data Amount Results

We tested how the amount of data affected the learning rate and accuracy of the two
different networks with our custom version of fruits-360 dataset. Since the dataset has
a good uniformity within the classes, we were able to reduce the size of the dataset to
50% or 25% by retaining only every other image, or in some cases every fourth image.
This ensured that the classes would contain images from all angles of the fruit despite
the removal of a large percentage of the images.

Figure 10 shows the base validation accuracies over 200 epochs for the BNN and
CNN. Table 7 demonstrates negligible difference in the training time of each network.
With unreduced data, a CNN is faster in terms of accuracy increase for each epoch,
and roughly equal in terms of CPU time for each epoch.

Epoch BNN 50% CNN 50% BNN 25% CNN 25%
10 26.5% 81.3% 17.3% 53.6%
50 8.9% 99.7% 8.8% 98.8%
100 8.5% 99.7% 10.2% 98.9%
200 9.5% 99.7% 9.8% 99.3%

Table 8. Average validation accuracies for BNN and CNN from 5 tests with fruits-360
dataset (percentages showing how much of that data is left on the dataset)
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Figure 12. Average validation accuracies for BNN and CNN from 5 tests with fruits-
360 dataset (50% of data)

Figure 13. Average validation accuracies for BNN and CNN from 5 tests with fruits-
360 dataset (25% of data)

Figures 12-13 and Table 8 show how the BNN drops off tremendously in accuracy
when reducing the data by 50% and 75%, resulting in a final accuracy of around
10% after 200 epochs. In both occasions the validation accuracy starts off higher than
where it settles down, which is an indicator that these smaller amounts of data are not
sufficient for our BNN implementation. The CNN only shows slight accuracy decrease
when the amount of data is reduced by 75%, going from a near 100% accuracy to
around 98%.

Regarding the training times with the reduced data amounts, there is no noticeable
difference between the BNN and CNN within the same data amounts, but the training
does become slightly faster the less data there is, (see Table 9).
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CNN 50% BNN 50% CNN 25% BNN 25%
Total time for 200 epochs 697.6 s 689.3 s 598.6 s 600.9 s
Time per epoch 3.58 s 3.45 s 2.99 s 3.00 s

Table 9. Times for training with reduced data

4.4. Uncertainty Estimation

We trained a Bayesian AlexNet network using the MNIST dataset. The training was
done for 200 epochs using Bayes by backprop without the local reparametrization
trick. We utilize uncertainty estimation methods that are specified in an article by Paras
Chopra [32]. The way we estimate uncertainty is by sampling 25 separate networks
that sample the weights that were learned in the training process. Due to the fact that
the weights are probability distributions instead of fixed values, every time we sample
the learned weights, we get slightly different values for the networks. Each of these
networks make a prediction that it outputs as a logsoftmax value. We take the mean
of these logsoftmax values and use the maximum value as the final prediction. The
network also has the option to refuse making a prediction. This is done by taking the
median of the logsoftmax values and setting a threshold for it. We will use 0.8 as the
threshold for our network which means that the network needs to reach a certainty
higher than 80% for a label for it to make a prediction. We train and use the same
group of sampled BNNs to make prediction on three separate data sources. First is
the MNIST dataset which the network was trained on. Second, we used the notMnist
dataset which was designed to fool a network that was trained on the MNIST dataset.
Thirdly we will generate random white noise images, which we will use as a input on
the network to see what percentage of the images does the network refuse to make a
prediction on.
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Figure 14. A successful prediction of an MNIST label

Figure 14 shows how our group of sampled BNNs outputs its prediction. Each of
the labels has its own histogram and each one of the sampled networks has its own
value represented. The horizontal axis of each histogram represents the ranges for
the logsoftmax values and the vertical axis shows the percentage of the networks that
have given a certain prediction value. For example, the histogram for label ’7’ has a
very high column on the right-hand side of the graph. This means that the majority of
the networks have decided on the value zero. One can obtain the confidence of these
networks by simply exponentiating the logsoftmax value.

eLM = C (6)

Where LM = logsoftmax value and C = confidence. For logsoftmax value zero,
equation 6 gives a confidence of one, which means that the network has a 100%
confidence in its prediction. The majority of the networks have the same output
value which results in an overall 100% confidence. This is indicated above the ’7’
histogram. The network overall achieved similar results on the rest of the data in the
dataset. This was expected due to the fact that during training, the network achieved a
validation accuracy of over 99% which indicates that the network is highly capable of
distinguishing between the different labels in the dataset. However, as a result of the
relatively high confidence threshold that we set for our network, some of the outputs
were rejected by the network. If the network was forced to make a prediction on the
rejected outputs, there is a high likelihood that prediction would be correct, despite
the confidence not reaching the needed threshold. However, the image in Figure 15
demonstrates that it is warranted that the network expresses some uncertainty.
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Figure 15. A example of a rejected MNIST image

In Figure 15, none of the histograms are highlighted, meaning the network did not
reach the required amount of confidence to make a prediction. Overall, looking at the
histograms we can see that logsoftmax values are evenly spread across. The highest
confidence level of 0.73 can be found on label ’7’ which in this case would have been
the correct prediction. However, looking at the rejected image we can understand why
the network gave more serious consideration for labels such as ’1’ and ’9. If we wished
for the network to classify this image we could either remove or lower the required
confidence level. Doing this results in a smaller amount of data rejection but it will
also lower the accuracy of the network due to some images being mislabeled by the
network.

Figure 16. A example of a rejected notMNIST image

The second experiment with executed with the same group of sampled BNN
networks achieved expectantly worse results. The networks managed to reject a sizable
portion of the data that was fed to it. However, nearly half of the data led to predictions
that exceeded the confidence threshold, which resulted in a false prediction by the
network. In this experiment the network has two things working against it: the network
was not trained on this dataset and this particular dataset was designed to fool networks
that were trained on the MNIST dataset.
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Figure 17. A example of a rejected white noise image

In comparison to the second test the third test showcases similar results. In half
of the cases, the network is able to refuse making a prediction, but still a significant
portion of data passes the threshold and causes the network to make a false prediction.
During testing it was found that increasing the threshold affected the results of the
white noise experiment significantly more than it did the notMnist experiment. In the
case of the notMnist experiment, increasing the threshold resulted in a roughly 10%
increase in rejected data whereas with the white noise images the number of images
that the network made a prediction on was on average halved.

MNIST notMNIST White
noise

Total images 10000 16852 100
Predictions made 9839 8023 22
Accuracy of predictions 99% 19% 4.5%

Table 10. Overall results

4.5. Results Summary

As a summary of the results, the overall performance is favoring the CNN. The CNN
had a faster learning rate in terms of increased accuracy per epoch and a better overall
accuracy in both CIFAR10 and fruits-360 datasets. The experiments with reduced
amounts of data showed that the BNN is even more data dependent than the CNN.
The lowering of the amount of data in the dataset resulted in a complete failure in the
BNN’s ability to accurately approximate the true posterior, whereas the CNN was able
to reach results comparable to the first experiment with the only difference being the
amount of epochs it took to get to the final accuracy. The networks’ times for training
where comparable to each other because of the model pruning that was implemented
in the BNN model. In the uncertainty estimation experiment we found that the network
can express its uncertainty well when it is dealing with data that it is well familiar with.
The network was trained on the MNIST dataset and it reached a validation accuracy
of 99%. When testing data was fed to the network, the BNN consistently made correct
predictions and refused making predictions on the images that were less clear. When
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the network was tested on the unfamiliar data, the results worsened significantly. Half
of the notMNIST dataset and a fifth of the white noise passed the uncertainty check.
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5. DISCUSSION

In this chapter we will give you a short overall reflection on our thesis work. We will
discuss about some of the problems we encountered during the testing process and
how we overcame them. We will also discuss how our results compared to the previous
findings in related work and give a couple of ideas for possible future work.

5.1. Project Reflection

Our initial target was to compare the performances of a Bayesian neural network and
a convolutional neural network. One of the original tasks which we were going to use
to measure the performance of our network was emotion recognition. As the scope
of the thesis became clearer we understood that we should opt for the more common
performance measurement tasks. This resulted in us abandoning emotion recognition
as we focused more on the comparison of the neural networks. We managed to
successfully familiarize ourselves with the source code from Shridhar et al. [21] and
implement our own version with our own tests. Unfortunately, we could not replicate
results from the original study. We believe this is because the study used different
initializations for the parameters of the experiments instead of the ones that came
with the source code. Our results are closer to the results that were presented in Yi-
Pei Chan’s report [33] where he recreated the Bayesian LeNet from [21]. We also
had some issues with performing our own experiments. The source code included
an implementation of the regular version of AlexNet, whereas the experiments in
[21] used the AlexNetHalf model where the number of filters is halved. Redoing the
experiments when the training of the networks takes close to half an hour resulted
in a lot of wasted time. Some of the limitations in showcasing uncertainty estimation
with our BNN are due to the fact that not all of our datasets had enough data or the
reached accuracy was not high enough to provide reliable results from the uncertainty
tests. We were able to overcome this by using a different dataset, MNIST, to have
the uncertainty estimation work as expected. With the initial expectations of the CNN
beating the BNN, our results met our expectations. What came as a bit of a surprise was
how much the BNN fell in accuracy with the smaller data amounts. It became quickly
clear to us that the BNN is even more data dependent than the already famously data
hungry CNN.

5.2. Literature

Our project results were in line with previous findings in related work and they do
confirm their results further. The key similarities where in the training and validation
accuracies being better with a CNN, and also reaching those accuracies faster with the
CNN [21]. Our results with the testing of uncertainty on the BNN were also in line
with the findings of related work [33][34].
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5.3. Future Work

One possible path to take from here is to continue testing these models with various
different datasets. Based on our study and other studies so far it seems that the CNN is
overall a bit more accurate when it comes to image classification. Testing the models
with datasets that they have not been tested with so far would probably further endorse
this statement.

Another idea for future work is implementing Bayesian learning to different types
of neural networks. The performance of the original model and Bayesian version of
the model could be compared in a similar manner we have been comparing the CNN
and BNN models. This could potentially demonstrate the unique features, e.g. ability
to express uncertainty, of Bayesian models more or even reveal some new information
about them.

Future research with the BNN could try to explore solutions to the bigger problems
that plague both the CNN and the BNN. The first problem is the large amount of data
that the networks require for the training process and the second problem is the long
time it takes to train these networks.
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6. CONCLUSIONS

Testing the performance of a Bayesian convolutional neural network and a more
traditional convolutional network showed that a CNN is faster in terms of accuracy
increase per epoch and more accurate overall. Our tests showed that with small
amounts of data(less than 300 images per class) the BNN performs significantly worse
and the decrease of data in a given dataset seems to affect a CNN less than a BNN.
This is not to say a BNN does not have its place, as it was demonstrated to being able
to express uncertainty, unlike a CNN. All of these findings are in line with the results
in previous studies on the topic.

To conclude, a CNN still reigns as the champion in many aspects. But as stated
in other literature, the strengths of BNN lie not only in its ability to refuse to give
out a prediction, but also to avoid the overfitting problem of more traditional neural
networks.
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8. APPENDIX

8.1. BNN Variables

Variable Value
Number of epochs 200
Initial learning rate 0.001
Activation function type Softplus
Data batch size 256
Validation portion 0.2
Optimizer Adam [35]
β - type Standard

8.2. CNN Variables

Variable Value
Number of epochs 200
Initial learning rate 0.001
Activation function type Softplus
Data batch size 256
Validation portion 0.2
Optimizer Adam [35]

8.3. Source Code

The source code for the models used in this thesis were provided by
Shridhar, Kumar and Laumann, Felix and Liwicki, Marcus [21]. The source
code for the models is available in https://github.com/kumar-shridhar/PyTorch-
BayesianCNN. The source code for the uncertainty estimation was provided by
Paras Chopra [32]. The source code for the uncertainty estimation is available in
https://github.com/paraschopra/bayesian-neural-network-mnist
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8.4. CNN Architecture

Layer type width stride padding Input shape nonlinearity

convolution (11 x 11) 64 4 5 M x 3 x 32 x 32 Softplus

max-pooling (2 x 2) 2 0 M x 64 x 32 x 32

convolution (5 x 5) 192 1 2 M x 64 x 15 x 15 Softplus

max-pooling (2 x 2) 2 0 M x 192 x 15 x 15

convolution (3 x 3) 384 1 1 M x 192 x 7 x 7 Softplus

convolution (3 x 3) 256 1 1 M x 384 x 7 x 7 Softplus

convolution (3 x 3) 128 1 1 M x 256 x 7 x 7 Softplus

max-pooling (2 x 2) 2 0 M x 128 x 7 x 7

fully-connected 128 M x 128

8.5. BNN Architecture

Layer type width stride padding Input shape nonlinearity

convolution (11 x 11) 32 4 5 M x 3 x 32 x 32 Softplus

max-pooling (2 x 2) 2 0 M x 32 x 32 x 32

convolution (5 x 5) 96 1 2 M x 32 x 15 x 15 Softplus

max-pooling (2 x 2) 2 0 M x 96 x 15 x 15

convolution (3 x 3) 192 1 1 M x 96 x 7 x 7 Softplus

convolution (3 x 3) 128 1 1 M x 192 x 7 x 7 Softplus

convolution (3 x 3) 64 1 1 M x 128 x 7 x 7 Softplus

max-pooling (2 x 2) 2 0 M x 64 x 7 x 7

fully-connected 64 M x 64
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8.6. Contributions Of Each Participant

The contributions from each participants were shared fairly evenly throughout the
thesis. Each member of this thesis wrote a section or two to chapter 1. Each of us
also contributed in researching the related work and explaining the contents of them
in chapter 2. In chapter 3 Paananen handled the Convolutional neural network section,
Antikainen handled the Bayesian neural network and Model weights pruning sections
and Tölli handled Bayes by Backprop and Local Reparametrization trick sections. The
responsibilities in chapter 4 were shared so that Antikainen handled all the testing for
Fruits-360 dataset, Tölli handled testing related to the CIFAR10 dataset and Paananen
did the uncertainty estimation with the MNIST dataset. Some modifications to the
source code was done by each member of the thesis. Each of us wrote down the results
and conclusions from the experiments that one was in charge of. Final chapters 5, 6, 7
and 8 were results from all of our contributions.


	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	


	
	
	
	
	

	
	
	
	

	
	
	
	

	
	REFERENCES
	
	
	
	
	
	
	


