2,925 research outputs found

    Grazing-angle scattering of electromagnetic waves in gratings with varying mean parameters: grating eigenmodes

    Get PDF
    A highly unusual pattern of strong multiple resonances for bulk electromagnetic waves is predicted and analysed numerically in thick periodic holographic gratings in a slab with the mean permittivity that is larger than that of the surrounding media. This pattern is shown to exist in the geometry of grazing-angle scattering (GAS), that is when the scattered wave (+1 diffracted order) in the slab propagates almost parallel to the slab (grating) boundaries. The predicted resonances are demonstrated to be unrelated to resonant generation of the conventional guided modes of the slab. Their physical explanation is associated with resonant generation of a completely new type of eigenmodes in a thick slab with a periodic grating. These new slab eigenmodes are generically related to the grating; they do not exist if the grating amplitude is zero. The field structure of these eigenmodes and their dependence on structural and wave parameters is analysed. The results are extended to the case of GAS of guided modes in a slab with a periodic groove array of small corrugation amplitude and small variations in the mean thickness of the slab at the array boundaries.Comment: 16 pages, 6 figure

    Computational study of boron nitride nanotube synthesis: how catalyst morphology stabilizes the boron nitride bond

    Get PDF
    In an attempt to understand why catalytic methods for the growth of boron nitride nanotubes work much worse than for their carbon counterparts, we use first-principles calculations to study the energetics of elemental reactions forming N2, B2 and BN molecules on an iron catalyst. We observe that in the case of these small molecules, the catalytic activity is hindered by the formation of B2 on the iron surface. We also observe that the local morphology of a step edge present in our nanoparticle model stabilizes the boron nitride molecule with respect to B2 due to the ability of the step edge to offer sites with different coordination simultaneously for nitrogen and boron. Our results emphasize the importance of atomic steps for a high yield chemical vapor deposition growth of BN nanotubes and may outline new directions for improving the efficiency of the method.Comment: submitted to physical review

    Orientation of biological cells using plane-polarized Gaussian beam optical tweezers

    Get PDF
    Optical tweezers are widely used for the manipulation of cells and their internal structures. However, the degree of manipulation possible is limited by poor control over the orientation of trapped cells. We show that it is possible to controllably align or rotate disc shaped cells - chloroplasts of Spinacia oleracea - in a plane polarised Gaussian beam trap, using optical torques resulting predominantly from circular polarisation induced in the transmitted beam by the non-spherical shape of the cells.Comment: 9 pages, 6 figure

    NIEL Dose Dependence for Solar Cells Irradiated with Electrons and Protons

    Full text link
    The investigation of solar cells degradation and the prediction of its end-of-life performance is of primary importance in the preparation of a space mission. In the present work, we investigate the reduction of solar-cells' maximum power resulting from irradiations with electrons and protons. Both GaAs single junction and GaInP/GaAs/Ge triple junction solar cells were studied. The results obtained indicate how i) the dominant radiation damaging mechanism is due to atomic displacements, ii) the relative maximum power degradation is almost independent of the type of incoming particle, i.e., iii) to a first approximation, the fitted semi-empirical function expressing the decrease of maximum power depends only on the absorbed NIEL dose, and iv) the actual displacement threshold energy value (Ed=21 eV) accounts for annealing treatments, mostly due to self-annealing induced effects. Thus, for a given type of solar cell, a unique maximum power degradation curve can be determined as a function of the absorbed NIEL dose. The latter expression allows one to predict the performance of those solar cells in space radiation environment.Comment: To appear on the Proceedings of the 13th ICATPP Conference on Astroparticle, Particle, Space Physics and Detectors for Physics Applications, Villa Olmo (Como, Italy), 23--27 October, 2013, to be published by World Scientific (Singapore

    Optical application and measurement of torque on microparticles of isotropic nonabsorbing material

    Get PDF
    We show how it is possible to controllably rotate or align microscopic particles of isotropic nonabsorbing material in a TEM00 Gaussian beam trap, with simultaneous measurement of the applied torque using purely optical means. This is a simple and general method of rotation, requiring only that the particle is elongated along one direction. Thus, this method can be used to rotate or align a wide range of naturally occurring particles. The ability to measure the applied torque enables the use of this method as a quantitative tool--the rotational equivalent of optical tweezers based force measurement. As well as being of particular value for the rotation of biological specimens, this method is also suitable for the development of optically-driven micromachines.Comment: 8 pages, 6 figure

    Optical measurement of torque exerted on an elongated object by a non-circular laser beam

    Get PDF
    We have developed a scheme to measure the optical torque, exerted by a laser beam on a phase object, by measuring the orbital angular momentum of the transmitted beam. The experiment is a macroscopic simulation of a situation in optical tweezers, as orbital angular momentum has been widely used to apply torque to microscopic objects. A hologram designed to generate LG02 modes and a CCD camera are used to detect the orbital component of the beam. Experimental results agree with theoretical numerical calculations, and the strength of the orbital component suggest its usefulness in optical tweezers for micromanipulation.Comment: 6 pages, 7 figures, v2: minor typographical correction

    Repeated or intermittent levosimendan treatment in advanced heart failure: An updated meta-analysis.

    Get PDF
    Abstract Introduction Advanced heart failure is a malignant disease characterized by a debilitating late course, with increasingly frequent hospitalisations and high rate of mortality. Levosimendan, an inodilator developed for the treatment of acutely decompensated chronic heart failure, has been recently proposed also as a repetitive treatment of advanced heart failure. Several studies on the use of levosimendan in this settings report mortality data. Independent meta-analyses on the effect on mortality of repetitive or intermittent levosimendan administration in advanced heart failure has been published but were criticized in regard to the selection of the studies. Meanwhile new data became available. We therefore updated the selection of studies and re-analyzed all the available data. Methods & results Data from seven randomized trial and a total of 438 adult patients using intermittent levosimendan in a cardiological setting were included in the present analysis. The average follow-up period was 8±3.8months. The use of levosimendan was associated with a significant reduction in mortality at the longest follow-up available [41 of 257 (16%) in the levosimendan group vs. 39 of 181 (21.5%) in the control arm, OR=0.54 (95% CI 0.32–0.91), p for effect=0.02, p for heterogeneity=0.64, I2=0%]. Conclusions The updated results suggest that repetitive or intermittent levosimendan administration in advanced heart failure is associated with a significant reduction in mortality at the longest follow-up available. There is therefore a strong rationale for a randomized clinical trial with adequate power on mortality

    Origin of electron-hole asymmetry in the scanning tunneling spectrum of Bi2Sr2CaCu2O8+δBi_2Sr_2CaCu_2O_{8+\delta}

    Full text link
    We have developed a material specific theoretical framework for modelling scanning tunneling spectroscopy (STS) of high temperature superconducting materials in the normal as well as the superconducting state. Results for Bi2Sr2CaCu2O8+δBi_2Sr_2CaCu_2O_{8+\delta} (Bi2212) show clearly that the tunneling process strongly modifies the STS spectrum from the local density of states (LDOS) of the dx2−y2d_{x^2-y^2} orbital of Cu. The dominant tunneling channel to the surface Bi involves the dx2−y2d_{x^2-y^2} orbitals of the four neighbouring Cu atoms. In accord with experimental observations, the computed spectrum displays a remarkable asymmetry between the processes of electron injection and extraction, which arises from contributions of Cu dz2d_{z^2} and other orbitals to the tunneling current.Comment: 5 pages, 4 figures, published in PR
    • …
    corecore