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We have developed a scheme to measure the optical torque exerted by a laser beam on a phase object by
measuring the orbital angular momentum of the transmitted beam. The experiment is a macroscopic simulation
of a situation in optical tweezers, as orbital angular momentum has been widely used to apply torque to
microscopic objects. A hologram designed to generate LG02 modes and a CCD camera are used to detect the
orbital component of the beam. Experimental results agree with theoretical numerical calculations, and the
strength of the orbital component suggest its usefulness in optical tweezers for micromanipulation.
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I. INTRODUCTION

Optical tweezers trap microscopic particles using the gra-
dient force generated by a tightly focused laser beam[1].
Angular momentum(AM ) in the beam can be transferred to
the trapped particle via absorption or scattering. Both spin
and orbital angular momentum have been used to rotate ab-
sorbing particles[2–5]. Spin angular momentum is due to the
polarization of light, and is ±" per photon for left or right
circularly polarized light[6,7]. Angular momentum due to
the spatial distribution of the light’s wavefront is called or-
bital angular momentum, and isl" per photon, wherel is the
azimuthal mode index[8]. Polarized light can be used to
rotate transparent birefringent particles[9,10] and transpar-
ent nonspherical particles[11–13]. In both of these cases, the
torque is due to the transfer of spin angular momentum, and
can be determined by measuring the degree of circular po-
larization of the light once it has been transmitted through
the particle in the trap[11].

Elongated particles have also been aligned through the
exchange of orbital angular momentum using noncircular
beams[14–16]. In this case, the gradient forces that act in
optical tweezers to attract a transparent particle towards re-
gions of high intensity act to rotate the particle so that it lies
within the noncircular high intensity focal spot. The same
effect can be achieved by using two independent beams to
trap the ends of an elongated particle[17]. Since this torque
arises purely from the interaction between the particle and
the intensity profile of the beam, and is therefore indepen-
dent of the polarization, it depends solely on the transfer of
orbital angular momentum. Notably, when rotating elongated
objects, this torque is much greater than that due to polariza-
tion [11], so the use of orbital angular momentum can be
highly desirable. However, to optically measure the total an-
gular momentum transferred to the particle, the orbital com-
ponent must also be measured. The measurement of this or-
bital component is the goal of this present work. However, to
avoid the complication of a highly converging and diverging
beam and microscope optics, a macroscopic experiment is
performed rather than using optical tweezers. This is also
desirable to avoid effects due to spin angular momentum. We
simulate the alignment of an elongated object(a rod) to an
elliptical beam on a macroscopic scale. The torque on the rod
can then be determined by measuring the resulting angular
momentum in the beam.

Laguerre-GausssLGd modes of laser light with a phase
singularity in the center of the beam carry orbital AM[8].
These modes of laser light can be made using computer gen-
erated holograms[18]. A hologram is a recording of the in-
terference pattern by a light field of interest with a reference
beam. By calculating the interference pattern that results
from a plane wave and LG mode we can make a hologram
which will generate LG modes when illuminated by a Gauss-
ian beam. The same hologram pattern that was used to make
a beam with orbital AM can also be used to detect orbital
AM in a beam as we will demonstrate in this paper.

Orbital angular momentum states are also of interest to
the quantum information and communication fields as the
infinite spatial modes offer multidimensional entanglement.
Computer generated holograms have been used to generate
superpositions of LG modes, and the same holograms can be
used to detect these states. These schemes have been pro-
posed to measure entanglement on the single photon level
[19,20].

II. THEORY

That light and other electromagnetic fields can carry an-
gular momentum follows directly from the transport of linear
momentum, since the linear and angular momentum flux
densitiesJ andp are related by

J = r 3 p. s1d

For electromagnetic fields, the momentum flux density is
given by

p = S/c = E 3 H/c, s2d

whereS is the Poynting vector andc is the speed of light.
The coupled electric and magnetic fields form a spin-1 sys-
tem, and, in general,(1) includes both a spin component,
associated with the polarization, and an orbital component
due to the spatial structure of the field[21,22].

A monochromatic paraxial field, such as a typical laser
beam, can be specified by a slowly varying complex scalar
amplitude functionu that satisfies the scalar paraxial wave
equation[23],
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In the paraxial approximation, the two tranverse vector com-
ponents of the field decouple, and the longitudinal compo-
nent vanishes. Thus, the two linearly polarized components
of the amplitude individually satisfy the scalar paraxial wave
equation, and the spin and orbital angular momenta de-
couple. Henceforth, we will only consider the orbital angular
momentum about the beam axis, which can be found using
the orbital angular momentum operator in cylindrical coordi-
nates,

Lz = − i ] /] f. s4d

The Laguerre-Gauss modes[23] form a complete orthogonal
set of solutions to(3), so we can write

u = o
p=0

`

o
l=−`

l=`

aplcpl, s5d

whereapl are mode amplitudes, and
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are the normalized mode functions for Laguerre-Gauss
modes LGpl of degreep and orderl. Since the LG modes are
orthogonal, the total power is given by

P = o
p=0

`

o
l=−`

l=`

uaplu2. s7d

Since the mode functionscpl are also eigenfunctions of the
orbital angular momentum operator, the orbital angular mo-
mentum flux is simply

L = o
p=0

`

o
l=−`

l=`

l uaplu2/v. s8d

Notably, the orbital angular momentum depends on the mag-
nitude of the (complex) mode amplitudes, and not their
phase. The power in a particular mode also depends on the
magnitude of the mode amplitude, and hence, if the modes
can be separated, the orbital angular momentum flux can be
determined by measurements of the power. It is not neces-
sary to separate modes of differing radial degreep, only
modes of differing azimuthal orderl, since the ratio of angu-
lar momentum to power is the same for all modes of the
same orderl. The modes of differingl can be separated by
using a hologram as an analyzer; this is discussed in the
following section.

The mode amplitudes can also be found directly from the
field, if the actual field is known. In general, this requires
knowledge of the actual electric and magnetic fields, includ-
ing phase information. However, since the mode amplitudes
themselves are not required, but only their magnitudes, the
holographic filtering we perform provides us with the neces-
sary information.

In order to theoretically predict the torque exterted on our
test object, we need to know the angular momentum fluxes
of the incident and transmitted beams. The torque acting on
the test object is then given by the difference in the angular
momentum fluxes of the incident and transmitted beams
given by (8). This requires the magnitudes of the mode am-
plitudes. We determine the mode amplitudes of the incident
beam by measuring the aspect ratio of our elliptical incident
beam at the beam waist, and assuming that we have an el-
liptical Gaussian beam. Thus, by assuming a constant phase
across the beam in the beam waist, we have the required
knowledge of the fields.

We determine the mode amplitudes by using an overde-
termined point-matching method, similar to the one we have
used previously for nonparaxial beams[24]. Since, for prac-
tical computational purposes, the summation in Eq.(5) must
be truncated at a finite degreepmax and orderlmax, we obtain,
for a single pointr n=srn,fn,znd,

usr nd = o
p=0

pmax

o
l=−lmax

l=lmax

aplcplsr nd. s9d

For a set ofnmax points, this gives a system of linear equa-
tions from which the unknown mode amplitudesapl can be
found. The number of pointsnmax is chosen to be larger than
the number of unknown mode coefficients, which isspmax

+1ds2lmax+1d, and apl are then found numerically using a
standard least-squares solver for an overdetermined linear
system.

The use of an overdetermined system eliminates the high-
spatial-frequency artifacts that would otherwise occur if only
the minimum possible number of points was used. The mode
amplitudes could also be found using an integral transform,
but the point-matching method allows a coarse grid to be
used and gives good convergence[24].

While the incident beam mode amplitudes can be found
by measuring the intensity profile of the incident beam, and
assuming a constant phase in the waist plane, this assump-
tion will not be sufficiently accurate for the transmitted
beam—passage through our test object alters the phase. In-
stead, we calculate the complex amplitude(including phase)
of the transmitted beam by treating the test object as a pure
phase object of negligible thickness altering only the phase
of the incident beam as it passes through(the physical optics
approximation). The same point-matching method is then
used to determine the mode amplitudes of the transmitted
beam. Equation(8) then gives the angular momentum fluxes,
and the difference between these is the torque exerted on the
test object.

This technique is used to calculate the torque as a function
of phase thickness(Fig. 7) and the amplitude of the sinu-
soidal variation of torque with respect to the angle of the rod
in the elliptical beam(Fig. 5).

The orbital torque can also be calculated by assuming that
the elongated particle acts as a cylindrical lens[14,25,26]. It
can be noted that cylindrical lenses can be used as mode
converters to produce Laguerre-Gauss beams which carry or-
bital angular momentum, also with resulting orbital torque
[25,26]
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The elliptical beam is periodic in the azimuthal anglef,
with period p. Therefore, a Fourier series expansion of the
azimuthal dependence contains terms of angular frequency
2m, wherem is an integer. The azimuthal term in the LG
modes arises from such a Fourier expansion, and so, for an
elliptical beam, or indeed any beam with an azimuthal period
of p, l =2m for nonzero modes. That is, only modes with
even l contribute. The actual distribution of power among
modes of differingl for the incident beam used in our calcu-
lations (a beam with an elliptical focal spot of aspect ratio
2.25, which is the measured aspect ratio of the beam used in
our experiments), is shown in Table I. Almost all of the
power is in modes withl =0, ±2.

Since the test object we used also has a periodicity in the
azimuthal angle ofp, only evenl modes are present in the
transmitted beam. This can be deduced from the fact that, in
the physical optics approximation, the transmitted field is the
product of the incident field and a phase factordsr ,fd,

Etrans= Eincd. s10d

Since only the azimuthal variation affects the orbital angular
momentum about the beam axis, it is sufficient to determine
the frequencies present in the Fourier expansion with respect
to the azimuthal anglef. Since this product is a convolution
in the Fourier domain, the angular frequencies present will
be those present in the incident beam plus those present in
the Fourier expansion ofd. Since bothEinc and d have a
period of p, the convolution does not alter the angular fre-
quencies present—the sum of two even integers is still an
even integer. If we consider an incident beam that is a single
LG mode, we see that the symmetric scatterer couples the
incident mode to even LG modes in the transmitted beam.

This result does not depend on the physical optics ap-
proximation (which we used above), and is a quite general
result relating the rotational symmetry of a scatterer with the
coupling between azimuthal modes[27].

III. METHOD

We have carried out an experiment designed to measure
the orbital angular momentum component of a light beam,
and from this infer the torque exerted by a light beam on an
object in its path(see Fig. 1). The orbital angular momentum
is detected by a hologram which generates LGpl modes(say
LG0,±2 in the first order) from a Gaussian input beam. The

LGpl modes have an orbital angular momentum component
of l" per photon[8], so that an LG0,2 mode has 2" orbital
angular momentum per photon. If the input beam is instead a
LG0,±2 then a Gaussian is generated in one of the two first
order modes in the diffraction pattern[20]. Therefore if the
input into the hologram is some arbitrary beam, then by mea-
suring the strength of the Gaussian at the center of the two
first diffraction orders, the orbital angular momentum carried
by the LG0,±2 components of the beam can be determined.
Only the Gaussian component in the first diffraction orders
has a nonzero intensity at the center of the spot. In this ex-
periment the arbitrary beam is an elliptical beam scattered by
a phase object. The phase object is a bar or rod which is at
some angle to the major axis of the elliptical beam. The
orbital angular momentum in this beam is a result of the
various modes which compose the elliptical beam and the
torque exerted on the phase object as it tends to align with
the major axis of the elliptical beam. Due to the order 2
rotational symmetry of the system, the torque will predomi-
nantly be due to thel = ±2 modes.

The pattern for the hologram was generated from the cal-
culated sinusoidal interference resulting from a plane wave
and a LG02 mode. This image of the pattern was printed onto
film using a Polaroid ProPalette 7000 Digital Film Recorder.
The film was then contact printed to a holographic plate that
has a thick silver halide emulsion layer. The developed plate
was bleached using mercuric chloride to produce a pattern
which acts as a phase hologram. Images of bars were also
made into phase objects using this same method—the phase
picture of the rod was made from a gray scale image that has
a circular profile(Fig. 2).

The experimental setup is shown in Fig. 1. A helium neon
laser beam is directed through an adjustable slit which cre-
ates an elliptical beam that is then incident on a plate. The
plate can be rotated such that the phase image of a rod on the

TABLE I. Distribution of power among modes of differing or-
bital angular momentum. The beam has an elliptical focal spot, with
an aspect ratio of 2.25, and has a Gaussian profile along the major
axes of the ellipse.

l Fraction of power

ù+4 ,1%

+2 6.4%

0 86%

−2 6.4%

ø−4 ,1%
FIG. 1. Experimental setup for measurement of torque on the

phase plate(rod).

FIG. 2. Gray scale profile and image of the circular rod.
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plate can be oriented at any angle with respect to the beam.
The beam then passes through a second holographic plate
which contains a LG02 sinusoidal phase hologram. The beam
then passes through a long focal length lens and onto a ro-
tating screen at the focal point of the lens. A CCD camera
captures the pattern displayed on the screen. The position of
the zero-intensity spots at the center of each diffraction order
is noted when a Gaussian beam(that is, an LG00 beam) is
incident on the hologram. The intensity at these locations is
proportional to the power in the mode with the appropriate
angular momentum. This system is calibrated by measuring
the detected signal produced when the pure LG mode of
known power is incident on the analyzing hologram.

To do this, the slit was removed and another LG02 holo-
gram replaced the phase image of a rod. The first order mode
from the first hologram, which has a known orbital angular
momentum, was then selected and sent through the analyzing
hologram. The pattern in the two first order modes from the
analyzer was recorded by the CCD camera.

In general, if we consider the measurement of the orbital
torque acting on an arbitrary scatterer rather than an ideal
scatterer such as our phase image, it will not be possible to
collect all of the scattered light. However, like our phase
object, the transparent particles usually trapped in optical
tweezers do not have a large refractive index contrast with
the surrounding medium, and reflect little of the incident
light; most of the incident light is transmitted through the
trapped particle. Thus, the experiment presented here pro-
vides a suitable model for the measurement of orbital torque
in optical tweezers.

IV. RESULTS

The two first order modes from the analyzing hologram,
when the input is a Gaussian beam, are LG0,+2 and LG0,−2
modes(Fig. 3). However we see that if an LG02 mode is
incident on the analyzer, one diffracted order from the ana-
lyzing hologram fills in to give a Gaussian and the other is
transformed into a higher order LG mode(Fig. 4). The filling
in is therefore an indicator of the angular momentum in the
incident beam. With a Gaussian input, which has no orbital

AM, two vortices were produced at the two first order
modes. So the pixels on the CCD that correspond to the
center of the vortices were then monitored, as a signal at
these center pixels means that the input beam has orbital
AM. The LG02 has a known orbital AM of 2" per photon,
and was used to calibrate the signal at the center pixels.

An elliptical beam scattered by a rod at an angle to the
beam’s major axis has angular momentum due to the torque
tending to align the rod with the major axis. Monitoring the
center pixels of the first order modes from the analyzing
hologram, we were able to measure the orbital angular mo-
mentum flux of the beam, and hence the torque exerted on
the rod. The difference between the signal at the two center
pixels shows a sinusoidal variation as the angle of the bar is
rotated with respect to the elliptical beam in agreement with
theory (Fig. 5). Since the torque is proportional to the beam
power, we show the torque efficiency, given here in units of
" per photon. This is the ratio of the torque to the power
divided by the optical angular frequencysP/vd.

The torque measured is dependent on the phase thickness
of the rod. The phase thicknesses of a number of rods, that
were exposed for different periods of time during the contact
print process, were measured using a Michelson interferom-
eter. The phase object was imaged onto a rotating screen and

FIG. 5. Signal difference from two center pixels, for the rotation
of a rod (with a circular profile) through 360°.

FIG. 3. First order modes from a LG02 hologram with a Gauss-
ian input. The graph shows a line scan through the image array.

FIG. 4. First order modes from a LG02 hologram with a LG02

input.
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recorded using a CCD camera. The phase shift of each rod
could then be determined from the shift in fringes of the
interference pattern(Fig. 6).

The rods corresponding to the interference patterns in Fig.
6 were placed in the elliptical beam at 45° to the major axis
of the elliptical beam when the spatial torque is greatest.
Therefore the torque as a function of phase shift was found
(Fig. 7).

V. DISCUSSION AND CONCLUSION

We have shown that in the macroscopic environment, the
orbital angular momentum in a transmitted beam can be
measured, allowing the torque on a phase object to be deter-
mined. The theoretical results show good agreement with the
experimental data.

In this experiment the orbital angular momentum transfer
was found to be as much as 0.8" per photon, compared to
0.05" for the alignment due to spin angular momentum for a
rod in optical tweezers with a Gaussian beam[11]. As the
orbital component is of considerable size it is of potentially
useful technological application if incorporated into optical
tweezers. Also, the effectiveness of this technique to measure
orbital angular momentum allows for complete measure-
ments of the torque in optical tweezers. So beams that con-
tain an orbital component are not only useful for microman-
ipulation, but also the torques involved can be fully
characterized.
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