493 research outputs found
Pulse-Echo Harmonic Generation Measurements for Non-destructive Evaluation
Ultrasonic harmonic generation measurements have shown great potential for detecting nonlinear changes in various materials. Despite this, the practical implementation of the technique in non-destructive evaluation (NDE) has typically been limited to the through transmission setup case, with which problems arise in certain situations. Recently, works in the fields of nonlinear fluids and biomedical imaging have reported different application of the harmonic generation theory by making use of reflective boundaries and beam focusing. It is thought that such techniques may be similarly applied in the field of NDE to enable single-sided nonlinear inspection of components. In this paper, we initially describe a numerical model which has been used to determine the effects of attenuation and acoustic beam diffraction on measurements of the nonlinear parameter beta. We then extend the model to incorporate first the effects of multiple reflecting boundaries in the propagation medium, then of focused source excitation. Simulations, supported by experimental data, show that nonlinear pulse-echo measurements have the potential to provide a viable (and practical) alternative to the usual through-transmission type as a means of measuring beta in solids. Furthermore, it is shown that such measurements may be optimised, both by adjusting the excitation frequency, and by focusing the acoustic source at a certain point relative to the specimen boundary.</p
Substructurability:The effect of interface location on a real-time dynamic substructuring test
A full-scale experimental test for large and complex structures is not always achievable. This can be due to many reasons, the most prominent one being the size limitations of the test. Real-time dynamic substructuring is a hybrid testing method where part of the system is modelled numerically and the rest of the system is kept as the physical test specimen. The numerical–physical parts are connected via actuators and sensors and the interface is controlled by advanced algorithms to ensure that the tested structure replicates the emulated system with sufficient accuracy. The main challenge in such a test is to overcome the dynamic effects of the actuator and associated controller, that inevitably introduce delay into the substructured system which, in turn, can destabilize the experiment. To date, most research concentrates on developing control strategies for stable recreation of the full system when the interface location is given a priori. Therefore, substructurability is mostly studied in terms of control. Here, we consider the interface location as a parameter and study its effect on the stability of the system in the presence of delay due to actuator dynamics and define substructurability as the system’s tolerance to delay in terms of the different interface locations. It is shown that the interface location has a major effect on the tolerable delays in an experiment and, therefore, careful selection of it is necessary
Connecting nonlinear normal modes to the forced response of a geometric nonlinear structure with closely spaced modes
This paper numerically and experimentally investigates the relationship between the nonlinear normal modes and the forced response of a clamped-clamped cross beam structure. The system possesses closely-spaced linear modes such that the applied force distribution across the structure plays a central role in the appropriation of the nonlinear normal modes. Numerical simulations show that the quadrature conditions of the forced response does not necessarily match the peak response nor the nonlinear normal modes of the underlying conservative system, but instead are dependent upon the applied excitation. Experimental investigations performed with a single-point excitation and control based continuation further demonstrate the necessity for appropriate forcing in order to extract the NNMs of such systems.</p
Results of the British Society of Gastroenterology supporting women in gastroenterology mentoring scheme pilot.
Introduction: Mentorship has long been recognised as beneficial in the business world and has more recently been endorsed by medical and academic professional bodies. Recruitment of women into gastroenterology and leadership roles has traditionally been difficult. The Supporting Women in Gastroenterology network developed this pilot scheme for female gastroenterologists 5 years either side of the Completion Certificate of Specialist Training (CCST) to examine the role that mentorship could play in improving this discrepancy. Method: Female gastroenterology trainees and consultant gastroenterologists within 5 years either side of CCST were invited to participate as mentees. Consultant gastroenterologists of both genders were invited to become mentors. 35 pairs of mentor:mentees were matched and completed the scheme over 1 year. Training was provided. Results: The majority of the mentees found the sessions useful (82%) and enjoyable (77%), with the benefit of having time and space to discuss professional or personal challenges with a gastroenterologist who is not a colleague. In the longitudinal study of job satisfaction, work engagement, burnout, resilience, self-efficacy, self-compassion and work-life balance, burnout scale showed a small but non significant improvement over the year (probably an effect of small sample size). Personal accomplishment improved significantly. The main challenges were geography, available time to meet and pair matching. The majority of mentors surveyed found the scheme effective, satisfying, mutually beneficial (70%) and enjoyable (78%). Conclusion: Mentorship is shown to be beneficial despite the challenges and is likely to improve the recruitment and retention of women into gastroenterology and leadership roles, but is likely to benefit gastroenterologists of both genders
Using non-linear vibration techniques to detect damage in concrete bridges
There has been much work published in recent years on the use of vibration characteristics to detect damage in bridges. Almost all of this work has been based on the assumption that the vibration is linear, i.e. the natural frequencies are not dependent on the amplitude of oscillation. The aim of the work presented here was to investigate the possibility of using changes in the non-linear vibration characteristics to detect damage in reinforced concrete bridges. These changes in the non-linear vibration characteristics were studied by conducting impact excitation vibration tests o reinforced concrete beams. The non-linearities were detected by examining the changes in fundamental frequency over time (and hence over amplitude of vibration). Several time-frequency distribution estimation tools are discussed including the discrete Fourier Transform moving window, the auto-regressive model moving window, harmonic wavelets and examples of the Cohen class of bilinear time-frequency distributions. A detailed investigation into these various distribution predictors was conducted to assess which is most suitable for analysing the vibration signals to detect changes in frequency with time. To understand the non-linearities in the vibration characteristics, a time-stepping model was described. The model is capable of including damage in the form of a moment-rotation relationship over the cracked region. It was validated for linear vibrations against theoretical values and the representation of a non-linear mechanism using the model was compared with experimental data. Static load tests were also conducted on the beams at various damage levels. They involved the use of vibrating wire strain gauges to investigate the moment-rotation behaviour over the cracked region. Several possible non-linear crack mechanisms are discussed and two of them are assessed using the vibration and the static load tests. Future experimental work is proposed to study the possible non-linear mechanisms further. The beam tests demonstrated that there is a change in non-linear vibration behaviour with damage. The change is greatest at low levels of damage and after the beam has been loaded to 30% of the failure load in three-point loading there is a reversal in the trend and a slight reduction in non-linearity with further damage
Multi-centre parallel arm randomised controlled trial to assess the effectiveness and cost-effectiveness of a group-based cognitive behavioural approach to managing fatigue in people with multiple sclerosis
Abstract (provisional)
Background
Fatigue is one of the most commonly reported and debilitating symptoms of multiple sclerosis (MS); approximately two-thirds of people with MS consider it to be one of their three most troubling symptoms. It may limit or prevent participation in everyday activities, work, leisure, and social pursuits, reduce psychological well-being and is one of the key precipitants of early retirement. Energy effectiveness approaches have been shown to be effective in reducing MS-fatigue, increasing self-efficacy and improving quality of life. Cognitive behavioural approaches have been found to be effective for managing fatigue in other conditions, such as chronic fatigue syndrome, and more recently, in MS. The aim of this pragmatic trial is to evaluate the clinical and cost-effectiveness of a recently developed group-based fatigue management intervention (that blends cognitive behavioural and energy effectiveness approaches) compared with current local practice.
Methods
This is a multi-centre parallel arm block-randomised controlled trial (RCT) of a six session group-based fatigue management intervention, delivered by health professionals, compared with current local practice. 180 consenting adults with a confirmed diagnosis of MS and significant fatigue levels, recruited via secondary/primary care or newsletters/websites, will be randomised to receive the fatigue management intervention or current local practice. An economic evaluation will be undertaken alongside the trial. Primary outcomes are fatigue severity, self-efficacy and disease-specific quality of life. Secondary outcomes include fatigue impact, general quality of life, mood, activity patterns, and cost-effectiveness. Outcomes in those receiving the fatigue management intervention will be measured 1 week prior to, and 1, 4, and 12 months after the intervention (and at equivalent times in those receiving current local practice). A qualitative component will examine what aspects of the fatigue management intervention participants found helpful/unhelpful and barriers to change.
Discussion
This trial is the fourth stage of a research programme that has followed the Medical Research Council guidance for developing and evaluating complex interventions. What makes the intervention unique is that it blends cognitive behavioural and energy effectiveness approaches. A potential strength of the intervention is that it could be integrated into existing service delivery models as it has been designed to be delivered by staff already working with people with MS. Service users will be involved throughout this research. Trial registration: Current Controlled Trials ISRCTN7651747
Model reference adaptive control of a nonsmooth dynamical system
In this paper a modified model reference adaptive control (MRAC) technique is presented which can be
used to control systems with nonsmooth characteristics. Using unmodified MRAC on (noisy) nonsmooth
systems leads to destabilization of the controller. A localized analysis is presented which shows that the
mechanism behind this behavior is the presence of a time invariant zero eigenvalue in the system. The
modified algorithm is designed to eliminate this zero eigenvalue, making all the system eigenvalues stable.
Both the modified and unmodified strategies are applied to an experimental system with a nonsmooth
deadzone characteristic. As expected the unmodified algorithm cannot control the system, whereas the
modified algorithm gives stable robust control, which has significantly improved performance over linear
fixed gain control
Transient Dynamics Assessment of a Gain-Scheduled Aircraft Controller Using Nonlinear Frequency Approach
Connecting nonlinear normal modes to the forced response of a geometric nonlinear structure with closely spaced modes
- …
