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a b s t r a c t

This paper introduces a method for the identification of the parameters of nonlinear
structures using a probabilistic Bayesian framework, employing a Markov chain Monte
Carlo algorithm. This approach uses analytical models to describe the unforced,
undamped dynamic responses of structures in the frequency–amplitude domain, known
as the backbone curves. The analytical models describing these backbone curves are then
fitted to measured responses, found using the resonant-decay method. To investigate the
proposed identification method, a nonlinear two-degree-of-freedom example structure is
simulated numerically and analytical expressions describing the backbone curves are
found. These expressions are then used, in conjunction with the backbone curve data
found through simulated experiment, to estimate the system parameters. It is shown that
the use of these computationally-cheap analytical expressions allows for an extremely
efficient method for modelling the dynamic behaviour, providing an identification pro-
cedure that is both fast and accurate. Furthermore, for the example structure, it is shown
that the estimated parameters may be used to accurately predict the existence of dynamic
behaviours that are well-away from the backbone curve data provided; specifically the
existence of an isola is predicted.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

As nonlinear behaviour in structural dynamics becomes increasingly important, so does the need to accurately describe
its characteristics. Whilst a number of reliable and efficient approaches have been developed for the identification of the
linear characteristics of nonlinear systems, for example [1,2], the identification of nonlinearities still poses a number of
challenges. Existing approaches to the problem in multi-degree-of-freedom systems include the restoring force method [3],
NARMAX methods [4] and the conditioned reverse path method [5]. An extensive review of these, and other approaches, is
given in [6]. Methods that are of specific interest to this work include the nonlinear resonant decay method [7,8], and the
use of Bayesian approaches [9–12].

Bayesian methods for parameter identification problems seek to determine the probability that a particular set of
parameter values are “correct”, given some experimental data. The resulting probability density function, referred to as the
posterior, is difficult to find analytically for nonlinear systems. Alternatively a Markov chain Monte Carlo (MCMC) method
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may be used, alongside simulations of the system, to sample from the posterior. Due to the complexity of modelling
nonlinear systems, these simulations often require numerical integration through time at great computational expense. This
issue can be mediated, to an extent, through the use of surrogate models and algorithms which are suitable for paralleli-
sation [13,14], or through using carefully selected subsets of the experimental data [12,15]. However, computational expense
still proves limiting for the application of these Bayesian methods to large nonlinear systems with many unknown
parameters.

In this paper, a method is introduced that allows Bayesian system identification to be conducted in a computationally
efficient manner without the need for model surrogates, or the need to use fewer experimental data. The method proposed
here relies on inferring parameter estimates from experimentally measured backbone curves (i.e. the unforced, undamped
response of nonlinear systems) and analytical expressions describing the curves. This approach results in significantly lower
computational expense than those using time-domain numerical models.

Two nonlinear oscillators, each with two degrees-of-freedom, are considered in this work. These are introduced in
Section 2, along with a procedure for the acquisition of data describing the backbone curves. This procedure is similar to the
resonant decay method, as detailed in [8]. A number of techniques may be used for developing analytical models for the
backbone curves; for example, harmonic balancing, multiple scales or the first-order normal form technique [16–18]. Here,
however, we use the second-order normal form technique [19] as it is not only able to analytically describe modal inter-
actions in backbone curves [20,21], but it is also suited for automation due to its matrix-based formulation – an essential
property for the identification of larger systems. A brief outline of the application of the second-order normal form tech-
nique to the example system is given in Section 3, and further details are provided in Appendix A.

Section 4 is dedicated to the discussion of the Bayesian parameter estimation approach taken here, with specific details
regarding the formulation adopted to accommodate the analytical model. This discussion also examines the use of the
residuals of the expressions describing the backbone curves, thus eliminating the need for explicit solutions which can be
computationally demanding to calculate. The results of the parameter identification for the example systems are presented
in Section 5 where it is shown that the predictions of the responses of the system, made using the estimated parameters, are
accurate in response regions well-away from those described by the data. Specifically, backbone curves that are not
described by the measured data can be obtained, using the estimated parameters – demonstrated here by the prediction of
an isola. Finally, conclusions are drawn in Section 6 and discussion is given to the potential future applications of the
approach outlined in this work.

2. Measuring backbone curves

2.1. The example systems

Fig. 1 shows a two-degree-of-freedom oscillator with a symmetric, linear structure and three nonlinear springs. The
underlying linear structure is composed of two identical springs and viscous dampers that ground the masses, as well as a
spring and a viscous damper connecting the masses. The grounding springs and connecting spring have stiffness constants
k1 and k2 respectively, and the grounding dampers and connecting damper have damping constants c1 and c2 respectively.
Additionally, two nonlinear cubic springs, with constants α1 and α3, ground the masses and a nonlinear cubic spring, with
constant α2, connects the masses. The two masses have displacements x1 and x2, and both are of mass m. Sinusoidal forcing
at frequency Ωf is applied to the masses at amplitudes P1 and P2 as shown.

The equation of motion for this system may be written as

M €xþC _xþKxþΓxðxÞ ¼ Px cos ðΩf tÞ; (1)

where M, C and K are f2� 2g mass, damping and stiffness matrices, respectively. The f2� 1g vectors x, Γx and Px describe
the physical displacements, nonlinear terms and the forcing amplitudes respectively, and are written as

x¼
x1
x2

 !
; Γx ¼

α1x31þα2ðx1�x2Þ3

α3x32þα2ðx2�x1Þ3
 !

; Px ¼
P1

P2

 !
: (2)

In this paper, two different parameter sets for the oscillator shown in Fig. 1 are considered. These parameter sets, labelled
1NL and 3NL, are given in Table 1. Parameter set 1NL describes a system that has previously been investigated in [22], and

Fig. 1. A schematic diagram of an in-line, two-degree-of-freedom oscillator with a symmetric linear structure and three nonlinear cubic springs.
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has only one nonlinear spring, i.e. α2 ¼ α3 ¼ 0. Parameter set 3NL describes a system with three nonlinear springs, i.e. all
nonlinear parameters are non-zero. Aside from the nonlinear coefficient, the only parameter that differs between the two
systems is the coefficient of the linear spring connecting the masses, k2, resulting in different linear natural frequencies
between 1NL and 3NL. As the parameters describing the external forcing – P1, P2 and Ωf – are not characteristics of the
physical system, they are not listed in Table 1. Furthermore, for the technique presented here, it is not necessary for the
external forces to be measured. Instead, the forcing parameters are defined whenever a forced response is considered.

2.2. An experimental method for measuring backbone curves

The data used for the identification process in this paper have been collected through simulated experiment. This
employs a numerical integration routine, specifically MATLAB's integration algorithm implementing Runge–Kutta (4,5) [23],
to simulate the procedure detailed below. Additionally, Gaussian white noise is added to the data before processing, to
simulate noise generated by sensors.

This paper concerns the identification of nonlinear characteristics, and is based on the assumption that the underlying
linear system is either known or can be found, for example using the methods proposed in [1]. Here, as the linear para-
meters of the system are known, see Table 1, this step is omitted.

Fig. 2 demonstrates the procedure that is used to find the backbone curves of system 1NL. The panels ða1Þ and ða2Þ show
the experimental step of this procedure for the first and second backbone curves, labelled S1 and S2 respectively. Here, the
system is forced at a constant amplitude and the forcing frequency, Ωf, is varied such that the response may approach the
backbone curves. As measurements of the forced responses are not required, the frequency,Ωf, may be varied continuously
in time. This results in lower experimental cost in comparison to techniques that require the system to reach steady-state
between discrete frequency steps. Further details of how this may be achieved can be found in [24]. Once the response of the
system is close to a backbone curve, the forcing is released, i.e. the forcing amplitude is set to zero, such that the transient
response of the system then decays along, or close to, the backbone curve – see [24] for further details.

In panels ða1Þ and ða2Þ, a thin-black line and dotted-green line show the forced response branches and backbone curves
respectively. The paths taken along the forced response branches to approach the backbone curves are shown by a thick-
black line and the points of release are represented by blue crosses. The points on the backbone curve along which the
system response then decays are shown by large green dots (although here these points are illustrative and would not be
realised in the frequency–amplitude projection until after the data-processing step).

The next step involves transforming the time-domain data describing the displacements of the physical coordinates, x,
into the displacements of the linear modal coordinates, q. This step is necessary as the second-order normal form technique,
used to generate an analytical model of the system, uses a linear modal transform to decouple the linear terms in the
equation of motion, see Section 3 for further details. The linear modal displacements are found using the inverse linear
modal transform, written as q¼Φ�1x whereΦ is a modeshape matrix whose nth column describes the modeshape of the
nth linear mode. Due to the symmetry of the underlying linear structure of the systems considered here, the modeshape
matrix may be written as

Φ¼ 1 1
1 �1

� �
such that q¼

q1
q2

 !
¼ 1
2

x1þx2
x1�x2

 !
: (3)

Panels ðb1Þ and ðb2Þ in Fig. 2 show the transformed time-domain decay data for the backbone curves S1 and S2 respectively.
Both panels are in the projection of time, t, against the modal displacements q1 and q2, where q1ðtÞ and q2ðtÞ are represented
by solid-blue and dotted-red lines respectively. Embedded plots in these panels show a portion of the decay data in detail,
and illustrate that for the decays along both backbone curves, the linear modes respond at the same frequency. Furthermore
it can be seen in panel ðb1Þ, showing S1, that linear modal coordinates are in anti-phase, and panel ðb2Þ shows that q1 and q2
are in-phase along S2.1 This frequency and phase information is used later for the application of the second-order normal
form technique.

The final step in the experimental acquisition of backbone curve involves the conversion of the time–displacement data
into the frequency–amplitude domain. This is achieved using a moving-window discrete Fourier transform, with a window
size of 5 periods, [25]. For the approach taken here the harmonic responses of this system are neglected and only the

Table 1
The parameter values used in the two example systems, 1NL and 3NL.

Parameter m c1 c2 k1 k2 α1 α2 α3

1NL 1 0.002 0.001 1 1 0.5 0 0
3NL 1 0.002 0.001 1 0.105 0.5 0.05 0.4

1 Note that q1 and q2 are linear modal coordinates. Panels ðb1Þ and ðb2Þ show how these modes contribute to the responses of the backbone curves S1
and S2 respectively.
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fundamental responses are considered. The fundamental responses of q1 and q2 are denoted u1 and u2 respectively, and are
assumed to be sinusoidal with frequency Ω and amplitudes U1 and U2 respectively – where Ω, the response frequency, is
distinct from Ωf, the forcing frequency. As the estimated frequency is likely to be more accurate for a signal of larger
amplitude, and as it is known that both linear modes share response frequencies, the dominant mode is used to obtain the
response frequency for both modes. It can be seen from panels ðb1Þ and ðb2Þ in Fig. 2 that q14q2 on S1 and q24q1 on S2.

Panels ðc1Þ and ðc2Þ in Fig. 2 show the frequency–amplitude data for backbone curves S1 and S2 respectively, and
represent the data used for the identification of the nonlinear parameters in system 1NL. These are both shown in the
projection of the common response frequency,Ω, against the fundamental response amplitudes, U1 and U2. Due to the noise
applied to the time-domain signal, the translation into the frequency domain is inaccurate for low-amplitude signals.
Therefore, the decay data along each of these backbone curves have been truncated as the low-amplitude mode approaches
zero. As can be seen in panels ðc1Þ and ðc2Þ, this results in the truncation of the dominant modes at relatively high
amplitudes. The data are also truncated at the start of the decay in order to remove the transient effects as the response

Fig. 2. A diagram of the procedure used to find the backbone curves of system 1NL through simulated experiment. The left-hand panels – labelled ða1Þ, ðb1Þ
and ðc1Þ – and right-hand panels – labelled ða2Þ, ðb2Þ and ðc2Þ – depict the process of data acquisition for backbone curves S1 and S2 respectively.

T.L. Hill et al. / Journal of Sound and Vibration 360 (2016) 156–170 159



converges towards the backbone curves. This transient behaviour is reduced if the system is released close to the backbone
curve, allowing more high-amplitude data to be used for identification.

The systems considered here are discrete, however the same technique may be applied to continuous systems, provided
that the linear modal displacements may be estimated. Additionally, as the technique presented here is concerned with
identifying nonlinear parameters, only backbone curves that exhibit nonlinear behaviour, and their constituent linear
modes, require experimental measurement [26]. This approach may be used to reduce the experimental and
computational costs.

3. Calculating the backbone curves

To find the backbone curves of the system described by Eq. (1) the associated unforced, undamped dynamics are con-
sidered, which may be written as

M €xþKxþΓxðxÞ ¼ 0: (4)

The second-order normal form technique is now used to transform the equation of motion, Eq. (4), into a set of time-
invariant equations describing the backbone curves. An outline of the approach is given here, and a more detailed
description is given in Appendix A. This approach is similar to that used in [20,21], and for a complete description of the
second-order normal form technique, see [19]. This technique is limited to weakly nonlinear systems, i.e. the nonlinear
terms are small relative to the linear terms. The error resulting from this assumption may be reduced by computing the
technique to a higher order of accuracy [27].

As described in Section 2.2, the first step in the second-order normal form technique is the linear modal transform
x¼Φq whereΦ is a modeshape matrix which, for the systems considered here, is given in Eq. (3). Applying this transform
to Eq. (4) allows us to write

€qþΛqþNqðqÞ ¼ 0; (5)

where Nq is a vector of nonlinear terms and Λ is a diagonal matrix whose nth diagonal term is the square of the nth linear
natural frequency, ωnn

2
. For the systems considered here, one may write

Λ¼
ω2

n1 0
0 ω2

n2

" #
¼ 1
m

k1 0
0 k1þ2k2

" #
; (6)

and for both systems one may write

Nq qð Þ ¼ 1
2m

α1ðq1þq2Þ3þα3ðq1�q2Þ3
α1ðq1þq2Þ3þα3ðq2�q1Þ3þ16α2q32

 !
: (7)

The next step is to apply the nonlinear near-identity transform q¼ uþh where u and h describe the fundamental and
harmonic contents of q respectively. Here, the harmonics are neglected as only the fundamental responses of the decay
along the backbone curve are measured. However in Appendix A the harmonics are retained at this stage.

By removing the harmonics, one may write q¼ u, which may be substituted into Eq. (7), giving NqðqÞ ¼NqðuÞ. As it is
assumed that the fundamental response of the nth linear mode, un, is sinusoidal, one may write

un ¼ unpþunm ¼Un

2
eþ jðΩt�ϕnÞ þUn

2
e� jðΩt�ϕnÞ; (8)

where Un and ϕn are the amplitude and phase of un respectively. As, in the cases considered here, the linear modes respond
at the same frequency (as shown in Fig. 2), both modes share the fundamental response frequency Ω. Note that the sub-
scripts p and m correspond to the positive and negative (plus and minus) signs of the complex exponents respectively.

The nonlinear near-identity transform results in the resonant equation of motion, written as

€uþΛuþNuðuÞ ¼ 0; (9)

where Nu is a vector of resonant nonlinear terms – populated with the resonant terms from NqðuÞ. The process used to
determine which terms in NqðuÞ are resonant is detailed in Appendix A, where it is found that NuðuÞ may be written as

Nu ¼ 3
αp u1pu1mþ2u2pu2m
� �

u1þu1pu2
2mþu1mu2

2p

h i
þαm 2u1pu1mþu2pu2m

� �
u2þu2

1pu2mþu2
1mu2p

h i
αm u1pu1mþ2u2pu2m

� �
u1þu1pu2

2mþu1mu2
2p

h i
þαp 2u1pu1mþu2pu2m

� �
u2þu2

1pu2mþu2
1mu2p

h i
þ8α2

mu2pu2mu2

0
B@

1
CA: (10)

where αp ¼ ðα1þα3Þ=2m and αm ¼ ðα1�α3Þ=2m. Substituting Eq. (10) into Eq. (9) forms the resonant equation of motion, in
which all terms resonate at frequency Ω. As detailed in Appendix A, this can then be used to find the set of time-invariant
equations describing the backbone curves which, for these systems, are given by

ω2
n1�Ω2

� �
U1þ

3
8m

α1 U1þpU2
� �3þα3 U1�pU2

� �3h i
¼ 0; (11a)
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ω2
n2�Ω2

� �
pU2þ

3
8m

α1 U1þpU2
� �3�α3 U1�pU2

� �3þp16α2U
3
2

h i
¼ 0; (11b)

where

p¼
þ1 when ϕ1�ϕ2 ¼ 0
�1 when ϕ1�ϕ2 ¼ π

(
; (12)

i.e. p¼ þ1 for backbone curves where the modes are in-phase, and p¼ �1 for backbone curves where the modes are in
anti-phase.

Eqs. (11) and (12) are used in conjunction with the resonant decay data to identify the nonlinear parameters. The
approach used for this has a Bayesian framework, as discussed in the following section.

Here, we find the parameters describing the equation of motion in the physical coordinates, Eq. (4); however, if one
requires a modal model then the parameters describing the modal equation of motion, Eq. (5), may be identified.

4. Bayesian system identification

This section provides a brief overview of the Bayesian approach employed here, which uses the analytical expressions
describing the backbone curves, Eq. (11), to form a physical-law based model M. The model contains a vector of parameters
θAΘ�RNθ which require estimation (such that, in this case, θ¼ fα1;α2;α3g). These estimates are probabilistic such that
future predictions made using M are robust against parameter uncertainties. Using the experimental data set, D, consisting
of the backbone curve data, the parameters, θ, are inferred. The probability of the parameters, θ, conditional on the model,
M, and the experimental data set, D, can be obtained using Bayes' theorem:

Pðθ D;Mj Þ ¼ PðDjθ;MÞPðθjMÞ
PðDjMÞ ; (13)

where PðθjD;MÞ is the posterior distribution and PðθjMÞ – the prior – is a probability distribution describing one's
knowledge of θ before the data were known. The denominator of Eq. (13) can be interpreted as a normalising constant
which ensures that the posterior integrates to unity, and is therefore defined as

PðDjMÞ ¼
Z
Θ
PðDjθ;MÞPðθjMÞ dθ: (14)

The term PðDjθ;MÞ is referred to as the likelihood and describes the probability of witnessing the data set D given that one
believes that the behaviour of the real system can be replicated using model M with parameters θ. Evaluating Eq. (13)
therefore requires the definition of a prediction-error model whose parameters can be included in θ.

In this case, the data set consists of K measurements of both U1 and U2, such that D¼ fUð1Þ
1 ;…;UðKÞ

1 ;Uð1Þ
2 ;…;UðKÞ

2 g.
Assuming that the probabilities of witnessing separate data are always mutually independent and employing a Gaussian
prediction-error model, the likelihood is

PðD θ;M�� �
p ∏

K

i ¼ 1
exp � 1

2σ2
1

UðiÞ
1 �Û

ðiÞ
1 ðθÞ

� �2" #
exp � 1

2σ2
2

UðiÞ
2 �Û

ðiÞ
2 ðθÞ

� �2" #( )
; (15)

where Û1 and Û2 represent predictions made by the model and σ1 and σ2 are parameters describing the standard deviations
of the likelihood; which, in this case, are also included in θ. In its current form, evaluation of the likelihood requires one to
assemble an explicit solution for Û1 and Û2 in terms of θ – this can be algebraically demanding and may prevent the method
proposed here from being applied to more complex systems. As an alternative, one can use the residuals of Eqs. (11), written
as ϵ1 and ϵ2 and defined as

ω2
n1� ΩðiÞ

� �2� �
UðiÞ

1 þ 3
8m

α1 UðiÞ
1 þpUðiÞ

2

� �3
þα3 UðiÞ

1 �pUðiÞ
2

� �3� �
¼ ϵðiÞ1 ; (16a)

ω2
n2� ΩðiÞ

� �2� �
pUðiÞ

2 þ 3
8m

α1 UðiÞ
1 þpUðiÞ

2

� �3
�α3 UðiÞ

1 �pUðiÞ
2

� �3
þp16α2 UðiÞ

2

� �3� �
¼ ϵðiÞ2 ; (16b)

where α1, α2 and α3 are taken from elements of θ, and the data set is now defined as
D¼ fUð1Þ

1 ;…;UðKÞ
1 ;Uð1Þ

2 ;…;UðKÞ
2 ;Ωð1Þ;…;ΩðKÞg.

Deriving the probability of witnessing the residuals, given θ, is a complex problem. In this case the authors have chosen
to use the Principle of Maximum Entropy [28] which states that, having defined its first two moments, choosing a likelihood
of the form

PðD θ;M�� �
p ∏

K

i ¼ 1
exp � 1

2σ2
1

ϵðiÞ1
� �2" #

exp � 1
2σ2

2

ϵðiÞ2
� �2" #( )

; (17)

T.L. Hill et al. / Journal of Sound and Vibration 360 (2016) 156–170 161



assumes the least amount of additional information. The consequences of selecting such a prediction-error model are
discussed further in Section 5.2.

This reduces the complexity of the problem, as the residual terms, ϵ1 and ϵ2, can be found directly from the substitution
of the data and parameters into Eqs. (16), without the need for algebraic manipulation. It is this approach that is adopted
here, i.e. Eq. (17) is used to evaluate the likelihood. Furthermore we define the prior as having a uniform distribution.

With the likelihood and prior defined, the next task is to generate samples from the posterior distribution. In the current
paper this is achieved through the use of Markov chain Monte Carlo (MCMC) methods2 – algorithms which involve the
evolution of an ergodic Markov chain whose stationary distribution is proportional to the posterior distribution (this is a
particularly useful feature as it allows one to generate samples from PðθjD;MÞ whilst circumventing the need to evaluate
the Nθ dimensional integral given by Eq. (14)). In this case, the authors employed a variant of the well-known Metropolis
algorithm [29] detailed in [30].

It is important to note that, as each sample generated using MCMC requires a model run, the method proposed here is
very computationally efficient, as each model run simply requires the evaluation of Eqs. (11). However, if one were
attempting to infer parameter estimates using time history data, for example, each model run would require the numerical
time-domain integration of the equations of motion of the system. The speed of the method proposed here is such that all of
the MCMC simulations shown subsequently were conducted in a matter of seconds – this is without any parallel processing
or the use of model emulators.

5. Parameter identification for the example systems

Here, a uniform prior distribution is utilised. Table 2 shows that the prior limits have been set such that the nonlinear
parameters are positive, as the backbone curves depicted by the experimental data show a hardening nonlinear behaviour in
both systems.

Table 2
The parameters limits used for the identification of systems 1NL and 3NL.

Parameter Lower limit Upper limit

α1 0 3
α2 0 3
α3 0 3

σ1 0 0.5
σ2 0 0.5

Fig. 3. Histograms, for system 1NL, showing the estimated values of the nonlinear parameters and the standard deviations of the residuals of the
expressions describing the backbone curves. The nonlinear parameters, α1, α2 and α3, are shown in blue and the standard deviations, σ1 and σ2, are shown in
green. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)

2 Here, as Eqs. (16) are linear functions of the parameters, a suitable choice of prior would allow for closed-form expressions for the posterior. The
authors have chosen to use MCMC as it demonstrates a method which can be applied in situations where such analytical treatment is not possible. It is
expected that this will be the case when higher order approximations of the backbone curves are utilised [27] (a topic of future work).
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5.1. Parameter identification for system 1NL

Fig. 3 shows histograms of the results of the identification procedure for system 1NL. Additionally, Table 3 shows, for each
of the parameters, the true and mean estimated values along with the relative error of the mean estimated values. It can be
seen from Fig. 3 that the variances of the estimated values of the nonlinear parameters are low. This indicates that the
effects of these parameters are well-represented by the backbone curve data, and hence there is little uncertainty regarding
their value.

Fig. 3 shows that the true value of α1 (which is 0.5) is outside of the limits of the estimated values, whereas one would
expect the true value to lie within these limits. The reason for this is that the second-order normal form technique, used to
describe the backbone curves, is an approximate method. Therefore, the parameter estimates describe an optimisation of
the fit between the true system and the approximate model, leading to the discrepancy between the true and estimated
values. The relative error of α1 is low, at less than 2 percent, suggesting a successful identification procedure. Additionally,
the estimated values of α2 and α3 are very low suggesting that their identification was also accurate. For cases where there is
a greater discrepancy between the true and the approximate model, the second-order normal form technique may be
computed to a higher order of accuracy [27].

In order to investigate the significance of the error in the estimation of the nonlinear parameters, the backbone curves
were calculated for both the true and estimated parameters using the numerical continuation software AUTO-07p [31].
These are shown in Fig. 4, where solid-green and dashed-red lines represent the backbone curves described by the true and
estimated parameters respectively. It can be seen that the two sets of backbone curves are very similar and, importantly, it
can also be seen that they are close at amplitude and response frequencies well-beyond those described by the data, which
are represented by blue dots.

5.2. Uncertainty propagation for system 1NL

An advantage of the Bayesian analysis adopted here is that, using the samples generated by MCMC, it is possible to
propagate the uncertainties in one's parameter estimates into future predictions. This involves conducting a Monte Carlo
simulation, where each model run uses parameters from the vector θ, which have been sampled from the posterior
parameter distribution (using MCMC). Recalling that θ also includes parameters which were used to define the likelihood
(σ1 and σ2 in this case), each model run is also “corrupted” with noise generated according to the prediction-error model

Fig. 4. The backbone curves S1 and S2 for system 1NL. These have been calculated using AUTO-07p (a numerical continuation package) for both the true
and estimated parameters, represented by solid-green and dashed-red lines respectively. Blue dots show the data used for the identification of these
parameters. These results are shown in the projection of the common response frequency, Ω, against the amplitude of displacement of the second mass, X2.
(For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)

Table 3
The true and mean estimated parameter values, along with the relative error of the estimated values, for system 1NL.

Parameter True value Mean estimated value Relative error

α1 0.5 0.5094 1.887%
α2 0 5.971�10�5 –

α3 0 4.524�10�4 –

σ1 – 3.173�10�3 –

σ2 – 2.330�10�3 –
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with parameters σ1 and σ2. Analysing the statistics of this ensemble of model predictions, Fig. 5 shows the 73σ confidence
bounds that arose when predicting the backbone curves of system 1NL. It can be seen that, for the most part, the data are
within the confidence bounds.

Any discrepancies (where data are outside the confidence bounds) may be due to erroneous assumptions about the
prediction-error model. Specifically, for future work, the authors aim to investigate the assumption that the standard
deviations of the prediction-error model are independent of the amplitude response of the system. This could involve
analysing a set of different prediction-error models, thus allowing the probability of these competing models to assessed
(also using a Bayesian framework) [32].

5.3. Parameter identification for system 3NL

The data used for the identification of system 3NL were also found through simulated experiment, in a similar procedure
to that applied to system 1NL, as described in Section 2. The results of this are shown in Fig. 6, where the blue and green
histograms show the identified values for the nonlinear parameters and standard deviations of the likelihood respectively.
Table 4 also gives the true, mean estimated, and relative error for each of the parameters for system 3NL. As with system
1NL, the mean estimated values are very close to the true values and the low variance suggests a high confidence (i.e. the
effects of the parameters are well-represented by the data). Also, the approximate nature of the model again results in true
parameter values that lie outside of the limits of the estimated values.

Table 4 shows that the maximum relative error in the estimation of the nonlinear parameters is less than 2.5 percent. To
test the influence of these errors, Fig. 7 shows the backbone curves for system 3NL, calculated using the numerical con-
tinuation software AUTO-07p, for both the true and estimated parameters. These are represented by solid-green and

Fig. 5. Uncertainty propagation for the backbone curve decay data for system 1NL. This shows the backbone curve decay data in the projection of the
fundamental response frequency, Ω, against the fundamental response amplitudes of the linear modal coordinates, U1 and U2. These are represented by
blue and red dots respectively. The black lines show the confidence bounds at 73σ. (For interpretation of the references to colour in this figure caption, the
reader is referred to the web version of this paper.)

Fig. 6. Histograms, for system 3NL, showing the estimated values of the nonlinear parameters and the standard deviations of the residuals of the
expressions describing the backbone curves. The nonlinear parameters, α1, α2 and α3, are shown in blue and the standard deviations, σ1 and σ2, are shown in
green. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)
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dashed-red lines respectively and blue dots show the data used for the identification of the parameters. One significant
feature of these results is the detached backbone curve, denoted Si1. This is referred to as an isolated backbone curve, and it
can be viewed as an imperfect bifurcation of S2, caused by the asymmetry of this system. For further discussion of bifur-
cations in backbone curves see [20], and for discussion of isolated backbone curves see [33]. It can be seen that the system
identification procedure used no data describing the backbone curve Si1; despite this, Fig. 7 shows that Si1 using the real
and estimated parameters are close. This demonstrates that the estimated parameters lead to accurate predictions of the
backbone curves, even for responses that are very distinct from those represented by the data.

Table 4
The true and mean estimated parameter values, along with the relative error of the estimated values, for system 3NL.

Parameter True value Mean estimated value Relative error

α1 0.5 0.5091 1.821%
α2 0.05 0.05118 2.367%
α3 0.4 0.4071 1.788%

σ1 – 8.943�10�4 –

σ2 – 5.848�10�4 –

Fig. 7. The backbone curves S1 and S2, along with the isolated backbone curve Si1, for system 3NL. These have been calculated using AUTO-07p (a
numerical continuation package) for both the true and estimated parameters, represented by solid-green and dashed-red lines respectively. Blue dots show
the data used for the identification of these parameters. These results are shown in the projection of the common response frequency, Ω, against the
amplitude of displacement of the second mass, X2. (For interpretation of the references to colour in this figure caption, the reader is referred to the web
version of this paper.)

Fig. 8. The response of system 3NL when subjected to forcing at amplitude PT
x ¼ ½0:002; 0:002�. The solid-green line shows the response branch when the

true nonlinear parameters are used, and the dashed-red line shows the response branch when the mean estimated parameters are used. These results are
shown in the projection of forcing frequency, Ωf, against the amplitude of displacement of the second mass, X2. (For interpretation of the references to
colour in this figure caption, the reader is referred to the web version of this paper.)
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5.4. Forced responses for system 3NL

Although backbone curves are of great value for understanding the fundamental properties of a nonlinear system, the
forced responses are generally of greatest importance in engineering. Therefore, to further test the significance of the errors
of the estimated parameters, the responses of the system when subjected to forcing are considered. Fig. 8 shows the
response of system 3NL when subjected to forcing at amplitude PT

x ¼ ½0:002;0:002�, such that forcing is applied directly to
the first linear mode. Responses using both the true and mean estimated parameters are represented by a solid-green and a
dashed-red line respectively. These results have been calculated using AUTO-07p [31]. As the forcing is only in the first linear
mode, the response envelops the backbone curve S1 (in which the first mode is dominant) leading to a Duffing-like forced
response when viewed in this projection. It can be seen in Fig. 8 that the forced response curve for the estimated parameters
is very close to that which uses the true parameters, suggesting that the errors have little influence for the forcing
considered here.

One significant property of an isolated backbone curve, such as Si1 in Fig. 7, is that it may correspond to isolated forced
solutions, or isola. These can be difficult to detect through experiment, or through modelling techniques that rely on
continuation without prior knowledge of their existence, and hence isolas present significant challenges and potential risks
in engineering [33,34]. Fig. 9 shows the forced responses of system 3NL using the estimated and true nonlinear parameters,
represented by dashed-red and solid-green lines respectively. These are subjected to forcing at amplitude PT

x ¼ ½0:01; �0:01�,
such that the forcing is applied directly to the second linear mode, and it can be seen that an isola exists, as indicated by the
existence of Si1. Fig. 9 also shows that the forced response branches are predicted accurately by the estimated parameters,
even for those describing the isola, which exists well-away from the data used for estimation.

As, in this projection, the isola describes a high-amplitude response, predicting that its existence is important. Fur-
thermore, reaching the isola experimentally would prove challenging, and hence, even if its existence is known, experi-
mental data describing an isola are often not available for identification. Therefore, it is an important feature of identification
methods to predict parameters with sufficient accuracy that they may, in turn, be used to predict the existence of such
features, well-away from the available data.

6. Conclusions and future work

In this work, an approach for the Bayesian identification of the nonlinear parameters of dynamic structures has been
introduced. This approach utilises the backbone curves of a system, which may be obtained experimentally, and modelled
using analytical expressions derived using the second-order normal form technique. These analytical expressions are
computationally efficient to evaluate, hence the identification procedure is carried out extremely rapidly. As such, the
probabilistic estimation of the nonlinear parameters of two example cases demonstrated here – where each system has
three unknown nonlinear parameters – is completed in a matter of seconds.

As discussed, one disadvantage of this approach is that the analytical expressions provide an approximate description of
the backbone curves, thus introducing error into the model of the system. This is demonstrated in the results presented
here, as the true values of the parameters lie outside of the range of estimated parameters. It is also demonstrated, however,
that the resulting errors are small and their influence on the dynamic responses are negligible. This is shown through a
comparison of the backbone curves of the systems using both the true and estimated parameter values, and shows a strong

Fig. 9. The response of system 3NL when subjected to forcing at amplitude PT
x ¼ ½0:01; �0:01�. The solid-green line shows the response branches when the

true nonlinear parameters are used, and the dashed-red line shows the response branches when the mean estimated parameters are used. These results
are shown in the projection of forcing frequency, Ωf, against the amplitude of displacement of the second mass, X2. (For interpretation of the references to
colour in this figure caption, the reader is referred to the web version of this paper.)
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agreement at responses well-beyond those represented by the experimental data. Specifically, an isolated backbone curve is
predicted for one case, and it is shown that this corresponds to an isola in the forced response of the system.

Not only has it been shown that this approach is extremely fast and accurate, it also lends itself to application to much
larger systems. This is due to its use of analytical models, which remove the need for expensive numerical solving routines,
and the use of the residuals of the expressions, which overcome the need to find explicit solutions. Additionally, the second-
order normal form technique, used to find the analytical expressions for the backbone curves, has a matrix-based for-
mulation that is well-suited to computer automation, hence allowing this approach to be extended to larger, more complex
systems.
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Appendix A. The method of second-order normal forms

The following description covers the steps of the second-order normal form technique that are necessary for the pro-
cedure followed in this paper. It is used to transform the unforced, undamped equations of motion, given by Eq. (4), into a
set of time-invariant equations describing the backbone curves.

In Section 3 it is shown how the first step of the technique, the linear modal transform is applied to Eq. (4). This
transforms the equations of motion from the physical coordinates, x, into modal coordinates, q, leading to the modal
equation of motion, Eq. (5), in which the linear terms are decoupled. The next step of the second-order normal form
technique, for unforced systems, is the nonlinear near-identity transform. This transform takes the form q¼ uþεh where u
and h describe the fundamental and harmonic contents of q respectively, and ε is used to denote smallness. In this case ε is
used to indicate that the harmonics are small, relative to the fundamental responses. As it is also assumed that the nonlinear
terms are small, one may write NqðqÞ ¼ εNqðqÞ. Therefore, applying the transform q¼ uþεh to NqðqÞ allows us to make the
order ε1 approximation εNqðuþεhÞ � εNqðuÞ.

As described in Section 3, the nth fundamental response is written as

un ¼ unpþunm ¼Un

2
eþ jðΩt�ϕnÞ þUn

2
e� jðΩt�ϕnÞ; (A.1)

where Un and ϕn are the amplitude and phase of un respectively, and Ω is the fundamental response frequency, common to
both linear modes. The substitution of qn ¼ un ¼ unpþunm into NqðqÞ is now made, using Eq. (A.1) and the description of
NqðqÞ given in Eq. (7). This substitution leads to

Nq uð Þ ¼ 1
2m

α1ðu1pþu1mþu2pþu2mÞ3þα3ðu1pþu1m�u2p�u2mÞ3

α1ðu1pþu1mþu2pþu2mÞ3þα3ðu2pþu2m�u1p�u1mÞ3þ16α2ðu2pþu2mÞ3
 !

: (A.2)

The purpose of the nonlinear near-identity transform is to find the resonant equation of motion, written as

€uþΛuþNuðuÞ ¼ 0; (A.3)

where NuðuÞ is a vector populated with the resonant terms from NqðuÞ. In order to determine which terms in NqðuÞ are
resonant, NqðuÞ ¼ ½nq�u� is found, where u� is a vector of all unique combinations of unp and unm, and ½nq� is a matrix
containing all coefficients of the corresponding terms. In the case considered here, there are 20 unique terms in NqðuÞ. Using
this, the ℓ th element of u� is written as

u�
ℓ ¼ ∏

2

k ¼ 1
uskℓp
kp uskℓm

km

n o
; (A.4)

where skℓp and skℓm are the exponents of ukp and ukm respectively. Substituting Eq. (A.1) into Eq. (A.4), u�
ℓ may be written as

u�
ℓ ¼ ∏

2

k ¼ 1

Uk

2

	 
 skℓp þ skℓmð Þ" #
ej ωℓt�ϕℓ

� �
; (A.5)

where ϕℓ and ωℓ are the phase and response frequency of u�
ℓ respectively, and are found using

ϕℓ ¼
X2
k ¼ 1

skℓp�skℓm
� �

ϕk; ωℓ ¼
X2
k ¼ 1

skℓp�skℓm
� �" #

Ω: (A.6)
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The matrix β is now introduced in order to determine which of these terms are resonant (i.e. jωℓj ¼Ω). The fn;ℓg th element
of β is written as

βn;ℓ ¼ω2
ℓ�Ω2 ¼

X2
k ¼ 1

skℓp�skℓm
� �" #2

�1

8<
:

9=
;Ω2: (A.7)

It can be seen that any element in β with a value of zero must correspond to an element in ½nq� that describes the coefficient
of a resonant term. Hence, one may define the matrix ½nu�which is equal in size to ½nq� and whose elements are populated by
the coefficients of the resonant terms, such that

½nu�nℓ ¼
½nq�nℓ if βnℓ ¼ 0;
0 if βnℓa0:

(
(A.8)

From this, the vector of nonlinear terms – see Eq. (A.3) – is defined using Nu ¼ ½nu�u�, where all terms in Nu resonate at
frequency Ω.

From Eqs. (A.2), (A.4) and (A.7), ½nq�, u� and β are calculated as

½nq�T ¼

αp αm

3αp 3αm

3αp 3αm

αp αm

3αp 3αm

3αp 3αm

6αp 6αm

6αp 6αm

3αp 3αm

3αp 3αm

3αm 3αp

3αm 3αp

6αm 6αp

6αm 6αp

3αm 3αp

3αm 3αp

αm ~α
3αm 3 ~α
3αm 3 ~α
αm ~α

2
666666666666666666666666666666666666666666664

3
777777777777777777777777777777777777777777775

; u� ¼

u3
1p

u2
1pu1m

u1pu2
1m

u3
1m

u1pu2
2p

u1mu2
2p

u1pu2pu2m

u1mu2pu2m

u1pu2
2m

u1mu2
2m

u2
1pu2p

u2
1pu2m

u1pu1mu2p

u1pu1mu2m

u2
1mu2p

u2
1mu2m

u3
2p

u2
2pu2m

u2pu2
2m

u3
2m

2
666666666666666666666666666666666666666666666664

3
777777777777777777777777777777777777777777777775

; βT ¼Ω2

8 8
0 0
0 0
8 8
8 8
0 0
0 0
0 0
0 0
8 8
8 8
0 0
0 0
0 0
0 0
8 8
8 8
0 0
0 0
8 8

2
666666666666666666666666666666666666666666664

3
777777777777777777777777777777777777777777775

; (A.9)

where αp ¼ ðα1þα3Þ=2m, αm ¼ ðα1�α3Þ=2m and ~α ¼ αpþ8α2=m. Now, from Eqs. (A.8) and (A.9), and using Nu ¼ ½nu�u�, Nu

may be written as

Nu ¼ 3
αp u1pu1mþ2u2pu2m

� �
u1þu1pu2

2mþu1mu2
2p

h i
þαpαm 2u1pu1mþu2pu2m

� �
u2þu2

1pu2mþu2
1mu2p

h i
αm u1pu1mþ2u2pu2m

� �
u1þu1pu2

2mþu1mu2
2p

h i
þαp 2u1pu1mþu2pu2m

� �
u2þu2

1pu2mþu2
1mu2p

h i
þ8α2

mu2pu2mu2

0
B@

1
CA: (A.10)

Substituting Eq. (A.10) into the resonant equation of motion, Eq. (A.3), it can be seen that all terms are sinusoidal and
resonating at frequency Ω. Therefore it follows that

Λ�Ω2I
� �

upþNþ
u

h i
eþ jΩtþ Λ�Ω2I

� �
umþN�

u

h i
e� jΩt ¼ 0; (A.11)

where I is the identity matrix, and up, um, Nþ
u and N�

u form two sets of complex conjugate vector pairs, given by

up ¼ 1
2

U1e� jϕ1

U2e� jϕ2

 !
; um ¼ 1

2
U1eþ jϕ1

U2eþ jϕ2

 !
;

and Nu ¼Nþ
u eþ jΩtþN�

u e� jΩt : (A.12)

From Eq. (A.11), it can be seen that

Λ�Ω2I
� �

upþNþ
u ¼ 0; (A.13)
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where from Eq. (A.10)

Nþ
u ¼

3
8 αp U3

1þU1U
2
2 2þeþ j2ϕd
� �h i

þαm U3
2þU2

1U2 2þe� j2ϕd
� �h i

eþ jϕd

n o
e� jϕ1

3
8 αp U3

2þU2
1U2 2þe� j2ϕd

� �h i
þαm U3

1þU1U
2
2 2þeþ j2ϕd
� �h i

e� jϕd þ8
α2

m
U3

2

n o
e� jϕ2

0
B@

1
CA; (A.14)

where ϕd ¼ϕ1�ϕ2. Substituting Eqs. (A.12) and (A.14) into Eq. (A.13) gives

ω2
n1�Ω2

� �
U1þ

3
4

αp U3
1þU1U

2
2 2þeþ j2ϕd

� �h i
þαm U3

2þU2
1U2 2þe� j2ϕd

� �h i
eþ jϕd

n o
¼ 0; (A.15a)

ω2
n2�Ω2

� �
U2þ

3
4

αp U3
2þU2

1U2 2þe� j2ϕd

� �h i
þαm U3

1þU1U
2
2 2þeþ j2ϕd

� �h i
e� jϕd þ8

α2

m
U3

2

n o
¼ 0: (A.15b)

Taking the imaginary parts of Eqs. (A.15) shows that sin ϕd

� �¼ 0. Therefore e7 j2ϕd ¼ 1 and e7 jϕd ¼ 71¼ p, such that when
p¼ þ1 the two modes are in-phase, and when p¼ �1 the two modes are in anti-phase, as seen in Section 2.2. This allows
Eqs. (A.15) to be written as

ω2
n1�Ω2

� �
U1þ

3
8m

α1 U1þpU2
� �3þα3 U1�pU2

� �3h i
¼ 0; (A.16a)

ω2
n2�Ω2

� �
pU2þ

3
8m

α1 U1þpU2
� �3�α3 U1�pU2

� �3þp16α2U
3
2

h i
¼ 0; (A.16b)

where αp ¼ ðα1þα3Þ=2m and αm ¼ ðα1�α3Þ=2m have been used.
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