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Abstract

High Static Low Dynamic Stiffness (HSLDS) mounts consist of nonlinear springs
that support a high static load with low static displacement, whilst maintain-
ing locally low stiffness near equilibrium, to give a low natural frequency and
consequently good isolation properties. Recent analysis has investigated such
devices when the force-displacement relationship is an odd function about the
equilibrium position, and analysed the consequences of different shapes of these
functions. However many devices that have the HSLDS characteristic do not
meet the assumptions of this analysis, in that the force-displacement relation-
ship is generally asymmetric about equilibrium. Furthermore, even devices that
do meet this assumption may be subject to significant adjustment error, par-
ticularly in the context of air vehicles where manoeuvres such as banked turns
can cause an apparent variation in gravitational acceleration, and a consequent
variation in the weight of the payload. This change in static load moves the pay-
load away from its intended region of low stiffness. The current paper provides
analysis of these situations, and shows that the performance of a mount with
a symmetric stiffness-displacement relationship is highly sensitive to errors in
the static loading. It is then shown that a mount with an asymmetric stiffness-
displacement function can offer significant performance advantages when there
are adjustment errors in the loading of the mount.

Keywords: Vibration Isolation, Nonlinear Dynamics, HSLDS, Normal form

1. Introduction

Vibration isolation is a vital requirement throughout much of engineering
[1], particularly when there is a strong source of vibration such as a motor. It
is frequently required to prevent the transmission of these vibrations to other
elements of the system, for reasons such as passenger comfort in vehicles, or
the protection of delicate electronic equipment. A typical means of protecting
equipment from a source of vibration is by placing it upon a vibration isolation
mount.
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A High Static Low Dynamic Stiffness (HSLDS) mount is a vibration isolation
mount based on a nonlinear spring, that means that near the static equilibrium
point stiffness is low, whilst elsewhere stiffness increases to ensure that deflec-
tions due to static load bearing remain acceptable [2]. The low dynamic stiffness
means that near resonance the frequency at which the peak response occurs, ω0,
is low. In the case of of base excitation, as is considered in this work, the peak
amplitude will also be low. The low dynamic stiffness also benefits the isola-
tion region, by giving a low isolation frequency, which is the frequency above
which the transmissibility is less than unity (for a linear system the isolation
frequency is given by ωi =

√
2k/m [2]). A low isolation frequency means that

a larger frequency band experiences isolation, and leads to reduced transmis-
sibility up until very high frequencies where transmissibility is dominated by
damping. The High Static Low Dynamic Stiffness (HSLDS) mount can achieve
these benefits whilst maintaining good static stiffness for load bearing, whereas
for linear mounts the stiffness must be chosen as a direct trade off between static
and dynamic concerns.

1.1. Prior work on HSLDS isolation mounts

Numerous isolators that exhibit HSLDS behaviour have appeared in the
literature, although the HSLDS term itself is relatively new. Winterflood [3]
presents a mount utilising a Euler spring for use in gravitational experiments.
Virgin and Davis [4] present a prototype mount consisting of a buckled strut,
and Plaut et al. [5] present analysis of a similar mount albeit with fixed as op-
posed to pinned end conditions. Virgin et al. [6] also propose a mechanism based
on a strip bent into a tear-shaped loop. Further results for both these types
of mount appear in Santillan’s PhD thesis [7]. DeSalvo [8] presents a general
design deriving the required nonlinear response from a geometrical arrangement
of springs, and presents results from an implementation using prestressed blade
springs. Carrella et al. [9] presents analysis of a similar geometrical spring ar-
rangement, with the aim of achieving near zero stiffness at equilibrium, known
as Quasi Zero Stiffness (QZS). In a more recent paper, Carrella et al. idealised
the dynamic response of this mechanism as a Duffing oscillator, demonstrating
important differences between its force transmissibility and motion transmissi-
bility [10]. Kovacic et al. [11] also proposed oblique spring arrangements, but
with nonlinear springs to reduce the variability in dynamic stiffness with dis-
placement from equilibrium. Zhou and Liu has proposed an HSLDS using an
electromagnetic negative spring element, that allows system parameters to be
tuned [12]. Robertson et al. [13] present theoretical analysis for a fully mag-
netic HSLDS device, where magnetism also supports the payload mass. Many
HSLDS devices are included in a review of passive vibration isolation meth-
ods by Ibrahim [14]. Further designs, both magnetic and geometric, and more
analysis of the nonlinear phenomena encountered by HSLDS mounts including
amplitude dependent response and jump frequencies, based on Duffing oscilla-
tor models, are given in [2]. In addition, Le and Ahn present analysis and an
experimental prototype for a spring-based mechanism designed for isolation of
a vehicle seat [15], showing that isolation is achieved for both broadband and
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harmonic signals. Recently, Xu et al. produced a successful experiment that
demonstrated the HSLDS concept when used to minimise force transmissibility
[16].

Huang et al. created an experimental isolator exploiting negative stiffness
from an arrangement of buckled beams [17]. This work appears to be the first
that makes detailed consideration of the effects of adjustment errors on a non-
linear spring isolator. It shows that imperfections in the load can change the
nature of the low amplitude response of the mass-spring system from a harden-
ing system to a softening system. Huang et al. extend the theoretical conclusions
of this work in [18, 19], showing that having a very low minimum mount stiffness
is not necessarily conducive to the best isolation in the presence of stiffness or
loading errors.

A High Static Low Dynamic Stiffness (HSLDS) mount is a vibration isolation
mount based on a nonlinear spring, that means that near the static equilibrium
point stiffness is low, whilst elsewhere stiffness increases to ensure that deflec-
tions due to static load bearing remain acceptable [2]. The low dynamic stiffness
means that in the resonant region of frequency response the frequency of peak
response ω0 is low, and in the case of base excitation considered in this work,
the peak amplitude will be low as well. It also benefits the isolation region, by
giving a low isolation frequency, which is the frequency above which the trans-
missibility is less than unity (for a linear system the isolation frequency is given
by ωi =

√
2k/m [2]). A low isolation frequency means that more frequencies

experience isolation, and leads to reduced transmissibility up until very high fre-
quencies where transmissibility is dominated by damping. The High Static Low
Dynamic Stiffness (HSLDS) mount can achieve these benefits whilst maintain-
ing good static stiffness for load bearing, whereas for linear mounts the stiffness
must be chosen as a direct trade off between static and dynamic concerns.

1.2. Overview of the current work

The discussion in Section 1.1 highlights the diversity in the physical imple-
mentations of HSLDS mounts that have been studied, and this diversity has led
to a wide variety in the shape and mathematical forms of the force-displacement
curves for the nonlinear springs created. However in the vast majority of anal-
yses, the springs have been idealised with Duffing or even linear approxima-
tions, masking many differences between the various force-displacement func-
tions used. In order to begin answering the question of which shape for the force
displacement curve was most desirable from a dynamical point of view, the au-
thors recently provided a higher order dynamic analysis of the HSLDS concept
[20]. This work used a 5th order polynomial function for force displacement
instead of the more usual 3rd order model, and showed that subtle changes to
the force-displacement curve of the spring could have drastic effects upon the
dynamic response.

The work presented here extends the analysis of [20], by relaxing the assump-
tion that the mount has a symmetric stiffness-displacement response. Firstly,
this allows the analysis to be applied to a wider range of devices, such as those
considered by Winterflood [3] and Virgin [4]. Secondly, it naturally leads to
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consideration of the effect of errors in the static load on the isolation perfor-
mance of the mount; HSLDS mounts depend on operating about a specified
static equilibrium point, and it is shown that they are therefore highly sensitive
to errors in the static load. Effects similar to those found in [17, 18, 19] are
found, and studied in detail, and are shown to cause a limitation on the amount
by which the dynamic stiffness may be reduced. The form of error considered
is that of an additional constant acceleration term expressed as an apparent
change in gravity, as may be experienced in an aircraft during a banked turn.
Other forms of error such as changes in the payload mass or loss of adjustment
in the mechanism are not considered, but the analysis provided could easily and
intuitively be adapted for this purpose.

It is shown that an HSLDS mount designed to have an extremely low dy-
namic stiffness, known as a Quasi-Zero Stiffness (QZS) mount, will be highly
sensitive to loading errors, and that a more moderately reduced stiffness mount
will often give better performance under realistic operating conditions. Further-
more, it is shown that mounts with asymmetric stiffness may offer moderately
better performance than ones with symmetric stiffness under ideal conditions.
Furthermore, they may also give substantially improved performance if the sign
of the loading error can be anticipated.

2. Analysis

2.1. Idealisation and nondimensionalisation of system

Fig. 1 illustrates the idealized system under consideration. Mass m is sup-
ported above a base by a nonlinear spring with a force-displacement curve given
by Pk(z) = P (z) +Fs, where z ≡ x− r is the relative displacement of the mass,
x is the absolute displacement of the mass and r is the displacement of the
base. Fs is the static force that the mount supports; typically this is equal to
the weight of the mass i.e. mg and this is assumed to be the case in this analy-
sis. The static displacement is denoted zs, and is the magnitude of displacement
that the mount encounters on application of the static load Fs. It is also natural
to define ks ≡ Fs

zs
as the static stiffness of the system; this is the stiffness of an

equivalent linear system that has the same static load and static displacement.
Using free body diagram analysis, the equation of motion of this system can

be determined as:
mz̈ + cż + P (z) = −r̈m (1)

Fs and zs are fundamental requirements for the static load bearing performance
of the mount; it must support the static load without exceeding a maximum
value for static displacement. Therefore Fs and zs are used to nondimensionalise
forces and displacements respectively:

x̂ =
x

zs
r̂ =

r

zs
ẑ =

z

zs
P̂ (ẑ) =

P (zsẑ)

Fs
(2)
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m x

r

Fs
Unloaded state

zs

Pk(z) cż

Figure 1: Idealisation of mass m supported by nonlinear spring and damper above base. The
unloaded state indicates the position of the mass when Fs is not applied.

Furthermore, time is nondimensionalised as

τ = tωs (3)

where ωs ≡
√
ks/m is the natural frequency of the equivalent linear system

with equal static force and displacement. The damping ratio of this system is
also employed, defined as:

λ =
c√

2mks
(4)

All nondimensional terms are substituted into Eq. (1) to give:

ẑ′′ + 2λẑ′ + P̂ (ẑ) = −r̂′′ (5)

where ′ indicates differentiation with regard to τ .

2.2. Shape properties of HSLDS force-displacement relationship

While a polynomial representation of the force displacement curve allows
a wide range of possible responses and facilitates analysis, it is hard to gain
physical intuition of the effects of varying individual polynomial coefficients.
Therefore, the force-displacement curve is discussed in terms of four nonlinear
shape properties that allow greater intuition.

Fig. 2 illustrates the shape properties on an arbitrary asymmetric HSLDS
force-displacement curve. It is assumed that the static force and displacement
occur in a positive direction when applied to the mass and that therefore the
unloaded state is at (−zs,−Fs).
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Force

Displacement, z

Fzs+

zkmin

zr
ke

ks

(−zs,−Fs)

(zs, Fs)

Unloaded position Designed equilibrium
position under static load.

Figure 2: Shape Properties of an asymmetric HSLDS force displacement curve.

The first two shape properties, ke and zr, are as defined previously in [20] but
recapped here. The stiffness at static equilibrium is naturally referred to as the
equilibrium stiffness ke, and maybe considered to be the dynamic stiffness for
small oscillation about equilibrium. The response is designed so that ke < ks,
to achieve a low natural frequency. The parameter zr is known as the reduced
stiffness range, and is the displacement towards the unloaded state over which
the stiffness of the nonlinear response is less than that of the equivalent linear
stiffness.

In this document, two further parameters are introduced which extend the
work in [20] by introducing asymmetry to the stiffness-displacement response.
The first of these is the positive static displacement force Fzs+, which is the
restoring force encountered at a displacement of zs beyond the designed equilib-
rium position. This parameter allows modelling of asymmetric mounts such as
the postbuckled beams described by Virgin [4], which have high stiffness near
the unloaded condition, but not at displacements beyond their designed equi-
librium positions. For symmetric systems, Fzs+ = Fs; in general Fzs+ < Fs as
the majority of anti-vibration mounts experience static loading in one direction
only, and there is no need to locate high stiffness where there is no advantage
to static load bearing. The second parameter is the displacement at minimum
stiffness, zkmin , which relaxes the assumption in [20] that the minimum stiffness
is located at the static equilibrium point. Changes to these parameters can
lead to performance advantages in the case of static loading errors, as shall be
demonstrated in Section 3.3.
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2.3. Resolving nondimensional polynomial coefficients from chosen shape pa-
rameters

Nondimensional shape properties are defined by scaling using the static force
and static displacement as before, hence:

ẑ=
zr
zs

k̂e =
ke
ks

ẑkmin
=
zkmin

zs
F̂zs+ =

Fzs+
Fs

(6)

It is to be noted that in the nondimensional scheme, the static force, static
displacement and static stiffness all have magnitudes of 1.

A 5th-order polynomial model is used for the form of P̂ (ẑ), in order to allow
sufficient constants for all geometric properties to be uniquely matched, hence:

P̂ (ẑ) = k1ẑ + k2ẑ
2 + k3ẑ

3 + k4ẑ
4 + k5ẑ

5 (7)

In order to match the force displacement shown in Fig. 2, the following math-
ematical conditions must be met. Firstly, to obtain the static force at static
displacement implies that:

P̂ (−1) = −1 (8)

To obtain the static stiffness at the reduced stiffness range gives:

dP̂

dẑ

∣∣∣∣∣
−ẑr

= 1 (9)

To obtain the equilibrium stiffness gives:

dP̂

dẑ

∣∣∣∣∣
0

= k̂e (10)

Locating minimum stiffness at ẑ = ẑkmin
implies that:

d2P̂

dẑ2

∣∣∣∣∣
ẑkmin

= 0 (11)

Finally matching the positive static displacement force gives:

P̂ (1) = F̂zs+ (12)

Combining Eq. (7) to Eq. (12) gives a system of linear equations in k1...k5

expressed in matrix form as:
−1 1 −1 1 −1
1 −2ẑr 3ẑ2

r −4ẑ3
r 5ẑ4

r

1 0 0 0 0
0 2 6ẑkmin 12ẑ2

kmin
20ẑ3

kmin

1 1 1 1 1



k1

k2

k3

k4

k5

 =


−1
1

k̂e
0

F̂zs+

 (13)
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Hence it is possible to set the polynomial coefficients to give the desired shape
properties of the force displacement. Note that some combinations of shape
parameters may result in unexpected shapes of the force-displacement curve,
because the 5th order polynomial has up to 4 turning points, some of which
may be located within the region of interest (see [20] for more discussion of
this issue). Therefore force-displacement plots must be checked to ensure that
the parameters chosen give a sensible curve shape before dynamic analysis is
conducted. This can usually be performed simply by inspection, but if automatic
criteria are required (for example if optimising the force-displacement profile for
a given application) it is sufficient to ensure that:

• d3P̂
dẑ3

∣∣∣
ẑkmin

> 0 to ensure that Eq. (11) gives a minimum not a maximum

and that

• The region of expected operation is free from any regions of negative
stiffness, to prevent bistable responses that are not modelled and would
be unwelcome in a practical mount.

2.4. Translation of the system due to constant acceleration

The effect of a constant acceleration of the base, altering the static equilib-
rium position of the mass relative to the base, is now considered. To simplify
dynamic calculations, the equation of motion Eq. (5) is translated for motions
about the new static equilibrium position.

The constant acceleration is expressed in terms of the gravitational accel-
eration g as ∆g where ∆ is a real constant. Considering just this constant
acceleration, r̈ = ∆g is substituted into Eq. (1). It is assumed that the static
force is due to the weight of the mass, i.e. Fs = mg, and the system is in static
equilibrium so that ẑ′′ = ẑ′ = 0. Substitution of these assumptions into Eq.
(2) to Eq. (5) allows the constant displacement from the original equilibrium
position Ẑc to be calculated by solving

P̂ (Ẑc) = −∆ (14)

To facilitate the dynamic analysis, Eq. (5) is changed to use the translated
variable z̃ = ẑ − Ẑc, giving:

z̃′′ + 2λz̃′ +Nz(z̃) = −r̃′′ (15)

where r̃′′ = r̂′′ −∆ and

P̃ (z̃) = P̂ (z̃ + Ẑc) = k̃1z̃ + k̃2z̃
2 + k̃3z̃

3 + k̃4z̃
4 + k̃5z̃

5 (16)

The constants k̃n may be found from the Taylor expansion of P̂ (z̃) about zero,
evaluated at Ẑc.
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2.5. Excitation

The oscillatory part of the base motion is assumed to be a harmonic signal
with amplitude R̃ and phase difference φ, hence:

r̃′′ = −Ω̂2R̃ cos(Ω̂τ + φ) (17)

where Ω̂ = Ω/ωs. This is representative of a typical situation, where there is a
source of vibration that is dominated by a single frequency, such as in the vicinity
of a motor. Note that the phase difference φ has been applied to the excitation
instead of the response to simplify calculations, and will be determined later.
Substituting Eq. (17) into Eq. (15) gives:

z̃′′ + 2λz̃′ + P̃ (z̃) = Ω2R̃ cos(Ω̂τ + φ) (18)

2.6. Normal forms analysis

The steady state solutions to Eq. (18) are found using the method of normal
forms [21]. The full details are given in Appendix A, however a brief outline of
the method is given here.

The method transforms Eq. (18) to the form

u′′ + 2λu′ + ω2
nu+Nu(u) = Ω2R̃ cos(Ω̂τ + φ) (19)

where z̃ = u+ h(u), and h(u) << u so that u is an approximation to z̃. In this
work, U represents the amplitude of the component of z̃ that is at the forcing
frequency whereas h(u) represents the response at harmonics of the forcing
frequency. The natural frequency ωn used in Eq. (19) is an estimate that may
be found in various ways. Unlike Eq. (18), Eq. (19) may be solved exactly
on substitution of a trial solution of form u = U cos(Ω̂τ). The determination
of Nu(u) and h(u) occurs alongside the substitution of this trial solution, and
results in Nu(u) having form:

Nu(u) =
∑

CsU
s cos(Ω̂τ) (20)

This is substituted into Eq. (19), and the result split into real and imaginary
components of cos(ωt):

−Ω̂2U + ω2
nU + <(

∑
CsU

s) = −R̃Ω̂2 cosφ (21)

−2λΩ̂U + =(
∑

CsU
s) = −R̃Ω̂2 sinφ (22)

To eliminate φ, both equations are squared and summed, resulting in a polyno-
mial in U for a given Ω̂, which can be solved to give U . φ can then be resolved
from either equation.

When U has been determined, the transformation h(u) can be evaluated,
and this is used to determine harmonic responses of form Hq cos(qΩ̂). In this
work, H2 and H0 (time-constant response) are seen to be potentially significant.
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Figure 3: Force displacement curves of two symmetric stiffness mounts; a mount with k̂e = 0.01
(solid line) referred to as the Quasi-Zero Stiffness (QZS) mount, and a mount with k̂e = 0.25

(dot-dash line) known as the Reduced Stiffness (RS) mount. For both mounts, ẑr =
√

1/3,

ẑkmin
= 0 and F̂zs+ = 1 .

Finally, the amplitude of absolute displacement X̂1, may be determined from
phasor addition of u and the forcing signal.

3. Results and discussion

3.1. Symmetric HSLDS mounts subject to constant acceleration term

Results are presented for two symmetric stiffness mounts, with force dis-
placement curves shown in Fig. 3. The first of these has a very low equilibrium
stiffness of k̂e = 0.01, and shall be referred to as a Quasi-Zero Stiffness (QZS)
mount, a term suggested by Carrella in [9]. The other has a more moderately

reduced equilibrium stiffness of k̂e = 0.25, and shall be referred to as simply a
Reduced Stiffness (RS) mount.

Fig. 4 and Fig. 5 show the effect of the constant acceleration term ∆ on
the steady state dynamic response of these mounts. Firstly, consider Fig. 4
which shows the response of the QZS mount, as shown by the solid line in
Fig. 3. It can be seen that when ∆ = 0, this is an excellent isolator, with a
low natural frequency and peak amplitude (compared to the equivalent linear
system which has a peak response at Ω = 1), and consequently a low isolation
frequency. However as ∆ increases, the peak amplitude and frequency increase
dramatically; they remain below that of the equivalent linear system, but are far
greater than the designed performance. Note also that the response peaks now
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Figure 4: Steady state responses of the QZS mount, subjected to harmonic base excitation
and with constant acceleration term ∆. Line shows analytical solution, with a dotted line on
the upper graph indicating unstable regions of response. Markers show results from numerical
simulation of a stepped sine frequency sweep; ◦ indicates a sweep in the positive frequency
direction, × indicates the negative frequency direction. Peak at right of upper graph shows
the equivalent linear system response for comparison. k̂e = 0.01, ẑr =

√
1/3 , ẑkmin

= 0,

F̂zs+ = 1, λ = 0.01, R̂ = 0.0125
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Figure 5: Steady state responses of the RS mount, subjected to harmonic base excitation
and with constant acceleration term ∆. Lines and markers have same meaning as Fig. 4.
k̂e = 0.25, ẑr =

√
1/3, ẑkmin

= 0, F̂zs+ = 1, λ = 0.01, R̂ = 0.0125

soften with amplitude rather than stiffen. This softening effect is beneficial when
in resonance, because increases in peak amplitude are mitigated by reductions in
peak frequency; however note from the low amplitude response that it confers no
advantage to the isolation frequency. From the lower subplot it may be seen that
a significant H0 term (see Eq. (A.23)), denoting a constant offset in addition to
that caused by the static effect of ∆ alone, develops. This shows that the centre
of oscillation tends to head towards the point of minimum stiffness at higher
amplitudes. The magnitude of H2 shows that second order harmonics are now
significant in relation to the fundamental response; contrast this with symmetric
mounts under design conditions where only 3rd and 5th order harmonics exist,
and these are seldom of significant magnitude as shown in [20]. The magnitudes
of the terms H0 and H2 means that these cases approach the limits of our
assumption that these terms remain small (see (A.6)), and indeed at higher
levels of forcing errors are seen to occur.

Compare this to the performance of the RS isolator of Fig. 3. Fig. 5 shows
that both the peak frequency and amplitude are reduced by around 40% under
designed conditions, so the RS mount gives substantially less isolation than
the QZS mount when under design conditions. This system is still adversely
affected by the constant acceleration, but by a relatively smaller amount, with
the response hardly changing at all for ∆ ≤ 0.025. Comparing Fig. 5 to Fig. 4,
it can be seen that the QZS mount will often provide diminished isolation when
even a small constant acceleration term is present. At ∆ ≤ 0.025, the peak
amplitude and frequency are similar between the RS and QZS mounts, but the

12



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ẑ
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(ẑ
)
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Figure 6: Force displacement curves for asymmetric mounts. k̂e = 0.25, ẑr =
√

1/3.

RS mount’s response has a significantly smaller 2nd harmonic. It may also be
noted that the RS mount has slightly smaller constant displacement term Ẑ0

than the QZS mount. In summary, Fig. 4 and Fig. 5 show that when static
loading errors are present, the QZS mount has little or no advantage over the
RS mount and may even perform worse.

3.2. Designed performance of asymmetric HSLDS mounts

In this section, the performance of mounts with stiffness asymmetries, whilst
operating about their designed equilibrium (i.e. with ∆ = 0) is considered. The
force displacement curves of four such mounts are shown in Fig. 6, where the
asymmetric shape parameters ẑkmin

and F̂zs+ have been varied.
The steady-state frequency responses of the mounts shown in Fig. 6 are

shown in Fig. 7. This shows that for each of these mounts, a small reduc-
tion in peak frequency is observed compared to the symmetric stiffness mount
(ẑkmin

= 0, F̂zs+ = 1 ), when no static loading error exists. This is because, by
reducing the amount of stiffening in the positive ẑ region, the mount experiences
less hardening with increasing amplitude. These responses are accompanied by
small positive H0 terms as seen in the lower part of Fig. 7, showing that the
mounts have a slight tendency to move towards their points of minimum stiffness
when the amplitude of oscillation is large. Despite the presence of the second
polynomial terms in the force displacement curves of these mounts, 2nd order
harmonic responses remain small. Due to the slightly lower peak frequency and
amplitude of the asymmetric mounts, it may be said that they are an improve-
ment on the symmetric mount. There is little apparent difference between the
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Figure 7: Steady state responses of an HSLDS mounts with asymmetrical stiffness, subjected
to harmonic base excitation. Lines and markers have same meaning as Fig. 4. ∆ = 0.0,
k̂e = 0.25, ẑr =

√
1/3, λ = 0.01, R̂ = 0.0125.

form of asymmetry (ẑkmin
or F̂zs+ ) that is altered in this case.

3.3. Asymmetric HSLDS mounts with constant acceleration

This section considers the effect of the constant acceleration term ∆ on
the same mounts as described in the previous section, with force displacement
curves shown in Fig. 6. Fig. 8 shows the steady state response of the asymmetric
stiffness mounts subject to harmonic base excitation and a constant acceleration.

In this case, setting ẑkmin = 0.1 and Fzs+ = 0.25 both have the effect of
reducing both peak frequency and amplitude, and making both of these changes
together has an even greater benefit. The case with both ẑkmin

= 0.1 and
Fzs+ = 0.25 ameliorates much of the loss in performance due to the constant
acceleration ∆.

Another point of interest is shown by the backbone curves in Fig. 8. These
are given by the solutions of Eq. (A.27) with no forcing or damping present.
At the amplitude shown, the asymmetric mounts have a gently softening trend,
whereas the symmetric mounts have a significantly hardening trend. For the
asymmetric mounts, small increases in the peak amplitude are slightly compen-
sated for by a reduction in peak frequency; whereas for the symmetric mounts
they incur an increase in peak frequency. This means that the asymmetric
mounts’ resonant behaviour is less sensitive to changes in damping or excita-
tion, which in practice are both susceptible to errors in prediction and measure-
ment. This would be a significant aid to the design of a mount where resonant
behaviour is a constraint.
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Figure 8: Steady state responses of RA mount with symmetrical stiffness compared to asym-
metric stiffness mounts, subjected to harmonic base excitation and with constant acceleration
term ∆ = 0.1, k̂e = 0.25, λ = 0.01, R̂ = 0.015. Lines and markers have same meaning as Fig.
4, with the addition that the dot-dash line represents the backbone curve of the response.

It may also be noted that the second harmonic amplitudes are much smaller
in the asymmetric cases than in the symmetric cases. Therefore, despite the
symmetric stiffness mount having no even harmonics when under ideal con-
ditions, in realistic operating conditions when loading error is present they
will frequently exhibit significantly greater 2nd harmonics than the asymmetric
mounts.

Finally, Fig. 9 shows the influence of the different choices of shape parame-
ters on the isolation region. It is clear that all mounts give much better isolation
for frequencies up to 100 times the natural frequency of the equivalent linear
system. However the best of the mounts discussed, that with Fzs+ = 0.25
and ẑkmin

= 0.1 maintains a noticeable advantage over the others until ap-
proximately 20 times the equivalent linear frequency. Therefore the changes
described in the resonant region lead to benefits in the isolation region as well.

Clearly the advantages described above are only realised when ∆ has a neg-
ative sign, corresponding to an overload of the mount; if this cannot be an-
ticipated the asymmetric stiffness will be of little benefit. However there are
many situations where this assumption may be made; for example in transport
aircraft it may be anticipated that apparent g will often be raised for significant
periods due to manoeuvres such as banked turns; however periods of reduced g
are generally only transitory. Alternatively, the intended equilibrium point may
be chosen differently, so that it lies at the midpoint of the region of acceptable
performance created by asymmetry, thereby allowing negative or positive errors.
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Figure 9: Log plot of steady state responses (solid lines) of HSLDS mounts with symmetrical
and asymmetric stiffness, subjected to harmonic base excitation and with constant acceleration
term ∆ = 0.1, k̂e = 0.25, λ = 0.01, R̂ = 0.015. Right hand peak shows the equivalent linear
system response, red dotted line shows base amplitude.

3.4. Comparing a symmetric and asymmetric mount over a range of operating
conditions

Using the resonance conditions described in Section A.6 of the Appendix, it
is possible to create a surface plot of the peak frequency for a given mount at
a wide range of operating conditions. The peak frequency ω̂0, nondimension-
alised by the natural frequency of the euivalent linear system, is an important
characteristic of a mount, and Eq. (A.26) shows that it is directly related to
peak amplitude.

The result of this is shown in Fig. 10 for two mounts, one symmetric and
the other asymmetric, over a range of base excitation amplitudes and levels of
constant acceleration ∆. The base amplitude is presented in terms of the ratio
R̃/λ, which due to Eq. (A.26) gives equivalent responses over a range of systems
in resonance; further details on this relationship may be found in [20]. The range
of R̃/λ shown encompasses most of the range over which the symmetric stiffness
mount gives useful frequency reduction.

As can clearly be seen, whilst both systems have identical performance at
∆ = R̃/λ = 0, the symmetric mount experiences greater peak frequency (and
therefore also greater peak amplitude) far more rapidly as constant acceleration
and excitation increase. This demonstrates that an asymmetric stiffness mount
can perform with a lower peak frequency (and therefore peak amplitude) than
a symmetric mount over a wide range of operating conditions. However, this
advantage is clearly dependent on being able to anticipate that ∆ is negative; if
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∆
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Figure 10: Surface plots of peak frequency for two different HSLDS systems, with nondimen-
sional peak response frequency ω̂0 plotted against the constant acceleration term ∆ and the
ratio of nondimensional base amplitude to the damping ratio of the equivalent linear system
R̃/λ. The upper plot is a symmetric system: k̂e = 0.25, ẑr =

√
1/3, F̂zs+ = 1, ẑkmin

= 0.

The lower plot is asymmetric with: k̂e = 0.25, ẑr = 0.577, F̂zs+ = 0.5, ẑkmin
= 0.1. Black

marker indicates condition where both mounts have no static load error, and amplitude is
negligible, hence both mounts perform equally.

∆ were to be positive, the two mounts would have similar performance as both
would oscillate in negative ẑ region of Fig. 6 where their force-displacement
curves are similar.

4. Conclusions

This work has shown that loading errors in the form of a constant accel-
eration of the base, expressed as a factor of gravitational acceleration, can be
a major impairment to the performance of HSLDS isolators with symmetric
stiffness. The reduction in performance is relatively more acute for Quasi-Zero
Stiffness isolators, suggesting that in many cases such mounts will perform little,
if at all, better than more moderately nonlinear mounts if static loading cannot
be accurately controlled.

Asymmetric stiffness can improve the performance of an HSLDS mount when
operating about its designed static equilibrium position. In addition, asymmet-
ric stiffness can be particularly advantageous if designed to anticipate the likely
sign of the loading error, and reduce the rate of stiffening experienced in that
direction. In these cases, they can ameliorate much of the reduction in isolation
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performance caused by the loading error. Furthermore the resulting resonant
responses are less sensitive to changes in excitation or damping, reducing the
effect of errors in these properties.

When loading errors are present, HSLDS mounts produce second harmonic
components in the resonant region, adding to the large vibrations at the fun-
damental frequency. It was found that mounts with appropriately designed
asymmetry can significantly reduce this problem as well.

The results of this study can be used to compare the dynamic performances
of HSLDS isolators with different nonlinear mechanisms and force-displacement
curves, using the idealisations given above. The results may also be used to
optimise designs of vibration isolators for particular applications, wherever the
nonlinearity may be controlled to tailor an optimal force-displacement curve.
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Appendix A. Solution of steady state response to harmonic base ex-
citation

Appendix A.1. Overview of method

Time simulation of Eq. (18) shows that the systems of concern in this work
frequently encounter steady-state responses with significant components that are
time-constant (in addition to the term Ẑc calculated already), and also at double
the excitation frequency. These steady state solutions are found analytically
with a Normal Forms (NF) method for second order differential equations [22,
23, 24, 25]. This method transforms Eq. (18) to a nearly-identical form that may
be exactly solved as a polynomial equation of the fundamental amplitude. The
transformation itself then yields information on the time constant and harmonic
terms, unlike the Harmonic Balance (HB) method [21, 26] which discards any
terms that are not matched.

The method proceeds in the following way. Firstly, Section Appendix A.2
defines the form of the transformation, and how accuracy of the transformed
system can be established. Then, in Section Appendix A.3, a solution form
is assumed, resulting in an expansion of terms which is given in matrix form
for convenience. The transformation is defined in the form of rules for how
each term should be handled. Once the transformation is performed, Section
Appendix A.4 shows how the resulting frequency response equation may be
solved exactly, and how the harmonics may be estimated. Finally, since Eq.
(18) defines displacement in relative terms, the means of obtaining the absolute
displacements is described in Section Appendix A.5.
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Appendix A.2. Normal form solution approximation for second order differen-
tial equations

Firstly, Eq. (18) is recast as:

z̃′′ + 2λz̃′ + ω2
nz̃ +Nz(z̃) = Ω2R̃ cos(Ω̂τ + φ) (A.1)

where Nz(z̃) = P̃ (z) − ω2
nz̃ and ωn is the natural frequency of the nonlinear

system. Estimating ωn as the linearised natural frequency, given by ω2
n = k̃1,

will give reasonable accuracy for weak nonlinearity, but a refined estimate that
reflects the softening or stiffening of the response can improve the prediction
accuracy of harmonic responses as shown in [24]. A means of obtaining a refined
estimate is obtained in Section Appendix A.6, and used in the results in this
work.

The Normal Form method determines a transformed variable u given by

z̃ = u+ h(u) (A.2)

where h(u) << u so that u is a reasonable approximation to z̃, and hence
the transformation may be described as a near-identity transformation. The
transformation, which removes non-resonant terms, is such that the transformed
equation of motion has the form

u′′ + 2λu′ + ω2
nu+Nu(u) = Ω̂2R̃ cos(Ω̂τ + φ) (A.3)

and can be solved exactly, whereupon harmonics can be found from the trans-
formation function h(u).

Firstly, Eq. (A.3) is subtracted from Eq. (A.1), and Eq. (A.2) is substi-
tuted to obtain the relationship between the original equation, the transformed
equation and the transformation itself:

h(u)′′ + 2λh(u)′ + ω2
nh(u) +Nz(z̃)−Nu(u) = 0 (A.4)

This equation is important because it represents the physical accuracy of the
method in terms of force; if it is solved exactly our transformed solution exactly
meets the balance of forces in Eq. (18).

However, the term Nz(z) must be approximated in terms of u and h(u). To
do this, h(u) is broken down into

h(u) = h1(u) + h2(u) (A.5)

where h2(u) << h1(u). Nz(z̃) is then approximated using a Taylor series:

Nz(z̃) ≈ Nz(u) + h1(u)
dNz
dz̃

∣∣∣∣
u

(A.6)

where the truncation error is of order O
(
h1(u)2, h2(u)

)
. Hence h2(u) represents

very small terms that are crudely approximated, while h1(u) represents terms
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that are larger but approximated more accurately.

Appendix A.3. Normal Form transformation

The Normal Form transformation is the process of determining Nu(u), h1(u)
and h2(u) and is done simultaneously with the substitution of a trial solution.
The trial solution for u is given in the form:

u = U cos(Ω̂τ) = up + um (A.7)

where the notation up = U
2 eiΩτ and um = U

2 e−iΩτ is used to facilitate the
forthcoming computations. Note that the trial solution assumes that response
is predominately at the forcing frequency Ω̂, an assumption that is confirmed
in all the cases studied here. Furthermore, recall that phase difference has
already been handled in the forcing function Eq. (17), hence its absence from
the assumed solution.

Now consider the trial solution substituted into an example expression αu2:

αu2 = α
(
u2
p + 2upum + u2

m

)
=
[
α 2α α

]  u2
p

upum
u2
m

 (A.8)

From this example it may be seen that any polynomial term of the trial solution
can be expressed as the product of a row vector of constants and a column vector
which consists of functions of U , Ω̂ and time of form uipu

j
m.

Time derivatives of polynomial terms can be shown in a similar format, by
multiplying by a diagonal matrix of niΩ terms. For example:

d

dτ
αu2 =

[
α 2α α

] 2iΩ̂ 0 0
0 0 0

0 0 −2iΩ̂

 u2
p

upum
u2
m

 (A.9)

The term in the diagonal matrix associated with a term uipu
j
m in the column

vector is given by:
ω̂(i,j) = iΩ̂(i− j) (A.10)

Higher time derivatives are simply found by repeatedly applying the square
matrix.

The above examples motivate the definition of a vector u∗ defined as:

u∗ =
[
u1
pu

0
m u0

pu
1
m u2

pu
0
m u1

pu
1
m u0

pu
2
m u3

pu
0
m ... u0

pu
P
m

]T
(A.11)

which consists of all combinations of i and j that will appear in the solution.
The highest exponent P is determined by the term h1

dNz

dz

∣∣
u

in Eq. (A.6) by
assuming that h1(u) has the same polynomial order N as Nz(u). The derivative
will have order N − 1, hence the product of these terms will be a polynomial of
order

P = 2N − 1 (A.12)
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The following terms from Eq. (A.6) and Eq. (A.4) may now be represented
with a matrix product notation:

h1(u) = h1u
∗ h2(u) = h2u

∗ Nu(u) = Nuu
∗

h(u) = hu∗ h(u)′ = hω̂u∗ h(u)′′ = hω̂2u∗

Nz(u) = Nzu
∗ dNz

dz̃

∣∣∣∣
u

= dNzu
∗

(A.13)

where h1, h2 and Nu are 1 × P horizontal matrices to be determined, h =
h1 + h2, ω̂ is a P × P diagonal matrix in the manner of that in Eq.(A.9),
ω̂2 = ω̂ω̂, Nz is 1×P horizontal matrix determined by expanding Nz(u) in the
manner of Eq. (A.8), and dNz is a similar matrix obtained from an expansion
of dNz

dz̃

∣∣
u
. One final term is required that needs special treatment because it

involves products of u∗ terms:

h1(u)
dNz
dz̃

∣∣∣∣
u

= (h1u
∗) · (dNzu

∗) = Mu∗ (A.14)

A term of M is given by

M(i,j) =
∑
a+c=i
b+d=j

h1(a,b)dN(c,d) (A.15)

where h1(a,b) and dN(c,d) are terms from h1, dNz respectively and the bracketed
subscripts (i, j) indicate that a term corresponds to an element of u∗ with uipu

j
m,

and subscripts (a, b) and (c, d) have a similar meaning to subscripts (i, j).
Substitution of Eq. (A.5), Eq. (A.6), Eq. (A.11), Eq. (A.13), and Eq.

(A.14) into Eq. (A.4) gives:

h1ω̂
2u∗ + 2λh1ω̂u

∗ + ω2
nh1u

∗

+ h2ω̂
2u∗ + 2λh2ω̂u

∗ + ω2
nh2u

∗

+ Nzu
∗ + Mu∗ −Nuu

∗ = 0 (A.16)

This can be solved term-by-term as P equations in the form:

h1(i,j)ω̂
2 + 2λh1(i,j)ω̂(i,j) + ω2

nh1(i,j)

+ h2(i,j)ω̂
2
(i,j) + 2λh2(i,j)ω̂(i,j) + ω2

nh2(i,j)

+Nz(i,j) +M(i,j) −Nu(i,j) = 0 (A.17)

where a similar convention to Eq. (A.15) is used. Note that it is necessary to
proceed in ascending order of the overall power given by i + j, as this ensures
that the relevant terms to compute Eq. (A.15) will have been evaluated. There
are infinitely many solutions of Eq. (A.17), by varying h1(i,j), h2(i,j) or Nu(i,j).
However the following rules are used to restrict this choice:

21



1. If i + j is greater than N , h1 is zero, otherwise h2 is zero. This has the
effect that h1 contains terms up to the Nth power of U , and h2 has higher
powers up to the P th power.

2. It is preferable to have Nu(u) as small as possible to keep Eq. (A.3) simple.
Therefore, the default action is to set Nu(i,j) = 0 and have

hn(i,j) =
−Nz(i,j) −M(i,j)

ω̂2
(i,j) + 2λω̂(i,j) + ω2

n

(A.18)

where n is 1 or 2 according to rule 1. Note that this term is small whenever∣∣ω̂(i,j)

∣∣ differs significantly from ωn, satisfying the assumption of a near
identity transformation.

3. However if |i− j| = 1, Eq. (A.10) leads to ω̂2
(i,j) + ω2

n ≈ 0, so that

the denominator in Eq. (A.18) is small when forcing is near resonance.
Therefore hn(i,j) is large and violates the assumption of a near identity
transformation. In these cases the term must be included in Eq. (A.3), so
Eq. (A.17) is solved by hn(i,j) = 0 and Nu(i,j) = Nz(i,j) +M(i,j).

Appendix A.4. Definition and solution of the frequency response equation

Once the above rules have been applied for all terms in u∗, in ascending
order of the overall power, and with a given forcing frequency, all matrices will
be populated. It is now possible to solve the resonant equation, Eq. (A.3).
Nu(u) can be rearranged into the following form:

Nu(u) = Nuu
∗ =

∑
CsU

s cos(Ω̂τ) (A.19)

where Cs is a complex coefficient given by

Cs =
∑
i+j=s

Nu(i,j)

2s
(A.20)

This can now be substituted into Eq. (A.3), and the result split into real and
imaginary components of cos(Ω̂t):

−Ω̂2U + ω2
nU + <(

∑
CsU

s) = −R̃Ω̂2 cosφ (A.21)

−2λΩ̂U + =(
∑

CsU
s) = −R̃Ω̂2 sinφ (A.22)

To eliminate φ, both equations are squared and summed, resulting in a polyno-
mial in U for a given Ω̂, which can be solved to give U . φ can then be resolved
from either equation.

Eq. (A.18) can now be evaluated to get the transformation functions, but
more usefully it can derive the qth harmonic given by Hq cos(qΩ̂) where:

Hq =
∑
|i−j|=q

h(i,j) (A.23)
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The amplitude is the modulus of Hq and the phase relative to the fundamental
response is given by ∠Hq.

Appendix A.5. Absolute motion of mass

The transformed variable U represents the component of the relative dis-
placement of the mass at the fundamental frequency. It is often desirable to
obtain the fundamental component amplitude of the absolute displacement,
which is obtained by phasor addition of U and the base motion:

X̂1 =

√(
U + R̃ cosφ

)2

+
(
R̃ sinφ

)2

(A.24)

The overall constant displacement due to vibration and to the acceleration
term is given by

X̂0 = Ẑc +H0 (A.25)

All other harmonic components of the absolute response are identical to their
counterparts in the relative response, as estimated by Eq. (A.23).

Appendix A.6. Resonance conditions and improved values for ω2
n

In many cases it is unnecessary to obtain a full frequency response for a
system, and it is more useful to gain general insight into the relationship between
peak frequency, peak amplitude and other system parameters. To obtain these
relationships, it is assumed that the system is in resonance and that therefore
the phase angle φ = π/2. This condition is substituted into Eq. (A.22) leading
to

−2λU Ω̂ + =(
∑

CsU
s) = −R̃Ω̂2

where it emerges that the summation term is zero when only stiffness nonlin-
earities are present, giving the simple relation

U =
R̃

2λ
Ω̂ (A.26)

when at resonance. Similar assumptions in Eq. (A.21) lead to

−Ω̂2U + ω2
nU + <(

∑
CsU

s) = 0 (A.27)

Therefore Ω̂ when in resonance can be determined for any given U by solving Eq.
(A.27) with a nonlinear solver (recalling that Cs terms will alter with different
trial values for Ω̂). This can be related back to the excitation and damping by
use of Eq. (A.26). The unforced and undamped solutions of Eq. (A.27) give
the so-called backbone curve [21].

Therefore the true nonlinear resonant frequency can be obtained, and this
value may be used for ωn in all other calculations if Nz(z) is updated as per Eq.
(A.1). This leads to improvements in accuracy as demonstrated in [24]. Further
detail on this topic may also be found in [27].
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