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Abstract
This paper numerically and experimentally investigates the relationship between the nonlinear normal modes
and the forced response of a clamped-clamped cross beam structure. The system possesses closely-spaced
linear modes such that the applied force distribution across the structure plays a central role in the appropria-
tion of the nonlinear normal modes. Numerical simulations show that the quadrature conditions of the forced
response does not necessarily match the peak response nor the nonlinear normal modes of the underlying
conservative system, but instead are dependent upon the applied excitation. Experimental investigations per-
formed with a single-point excitation and control based continuation further demonstrate the necessity for
appropriate forcing in order to extract the NNMs of such systems.

1 Introduction

Vibration modes play an important role in the design of mechanical structures as they govern the structure’s
preferred deformation shapes and the resonance frequencies at which the system is particularly sensitive to
external excitations. For nonlinear systems, resonance frequencies and modes shapes vary as a function of
the vibration amplitude [1, 2]. This evolution can be captured by nonlinear normal modes (NNMs).

In analogy with linear normal modes (LNMs), the resonances of a weakly-damped nonlinear system occur
in the neighborhood of its NNMs. More precisely, it was proved that a forced damped system can oscillate
according to the NNMs of its underlying conservative system provided that a multi-harmonic excitation in
phase quadrature with the response is applied to all the degrees of freedom of the system [3]. The appropriate
selection of the input force distribution (both spatially and harmonically) permits the counterbalance of the
damping in the structure and the isolation of a specific NNM. Several techniques exploit this result to directly
measure NNMs during experimental tests. For instance, the NNMs of a nonlinear beam, spring-mass system,
a wing-pylon structure, and steel frame structure were extracted using a method termed resonant decay in
Refs. [4, 5, 6, 7], respectively. In Refs. [8, 9], the NNMs of a nonlinear tuned mass damper and of a energy
harvester were extracted using the control-based continuation method which is also implemented in the
present work. In the above experiments, the minimal nonlinear coupling allowed the simplification of the
input force to a single-point single-harmonic excitation while still successfully capturing the system NNMs.
In Ref. [10], a system with symmetric but harmonically couple modes was considered, and a single-point
multi-harmonic excitation was required to isolate NNMs.

The present work investigates the resonant dynamics of a system with two closely-spaced modes (i.e. coupled
in the fundamental harmonic). For such systems, the amplitude and spatial distribution of the excitation
across the structure can strongly influence the ability to observe the NNMs of the system. Different forcing
configurations can lead to vastly different forced response curves and resonance peaks. Furthermore, as a
consequence of inappropriate forcing, the phase quadrature achieved between the excitation and the response



does not necessarily correspond to a resonance peak or a NNM of the underlying conservative system. These
results can have strong practical implications if one wants to measure NNMs during experimental tests.

Experimental investigations are conducted on a clamped-clamped cross beam. The thickness of the clamped-
clamped beam is relatively small compared to its length such that the system features geometric nonlinearities
with predominantly hardening characteristics when under large amplitude planar deformations. The NNMs
of the physical structure are studied experimentally using the method developed in Ref. [8]. Exploiting the
concept of control-based continuation (CBC), this method combines stabilizing feedback control and path
following techniques to track in the experiment the steady-state periodic responses describing the NNMs of
the system. The distribution of the applied input force will appear particularly important for the method.
The particular case of a single-point forcing that essentially excites one the LNMs of the underlying linear
structure is considered in order to show the limitations introduced by inappropriate forcing. In particular,
quadrature conditions will no longer be reached and the CBC method will fail to control the system dynamics
as the unexcited LNM gains importance in the response.

The paper is organized as follows. The system studied in the paper is presented in Section 2, together
with its linear properties which are experimentally identified. Numerical investigations are presented in
Section 3. A reduced-order model of the structure is built using the implicit condensation and expansion
method [11]. The NNMs of the underlying conservative system are discussed. The theory for nonlinear
force appropriation is briefly reviewed in Section 3.3 and the connections that exist between the system
NNMs and forced response is investigated for different forcing configurations. In Section 4 the NNMs of the
physical system are experimentally measured. Conclusions are discussed in Section 5.

2 The physical system

The structure under consideration was created to exhibit close natural frequencies between the first bending
and first torsion mode of vibration. The final design consists of two beams (the main beam and the cross
beam) joined in the middle and a third smaller beam connected to the main beam as seen in Fig. 1. The main
beam is clamped at both ends. The cross beam is welded to the main beam and two concentrated masses
are attached at both ends with set screws so the masses remain adjustable (i.e. change in the cross beam
symmetry and inertia is permitted). The third beam (force cross beam) was also welded to the main beam to
facilitate multi-input testing and the excitation of the first torsion mode; however, this is not utilized in this
work. The main beam’s dimensions are l x w x h of 1000mm x 12mm x 6mm, the cross beam’s dimensions
are l x d of 410mm x 12mm, and the force cross beams dimensions are l x w x h 150mm x 15mm x 15mm.
The dimensions of the concentrated masses are d x h of 38 mm x 24 mm.

Figure 1: Clamped-clamped cross beam.



2.1 Linear modal testing

The clamped-clamped cross beam structure presented in Figure 1 was first investigated using multi-input
multi-output impact hammer tests in order to extract its underlying linear properties. The shaker later used
for measuring NNMs was disconnected from the structure in order to discard its influence on the stiffness and
damping properties of the structure. The positions of the localized masses were adjusted such that the first
two natural frequencies are approximately 0.5 Hz apart while breaking the torsion mode symmetry to avoid
veering [12]. The two first natural frequencies and damping ratios of the final configuration are reported in
Table 1. The associated modal shapes are sketched in Figure 2. Although both modes combine bending and
torsion components, the first mode is dominated by a bending motion (Fig. 2(a)) whereas the second one is
dominated by torsion (Fig. 2(b)).

Mode 1 Mode 2
Frequency (Hz) 15.67 16.18

Damping ratio (%) 0.11 0.26

Table 1: Resonance frequencies and damping ratios identified from impact-hammer data.

(a) (b)

Figure 2: Linear mode shapes identified from impact-hammer data.

3 Numerical simulations

3.1 Reduced-order model

A finite element model of the structure in Fig. 1 was created in Abaqus. A total of 266 B31 beam elements
were used to discretise the cross sections of all beams as well as the concentrated masses at the tip of the
cross beam. The boundary conditions of the main beam are also modeled using linear axial springs whose
stiffness coefficients were determined from static force-displacement tests prior to clamping. The resulting
model contains 1596 degrees of freedom and appears to be stiffer than the physical system. The first and
second natural frequencies are overestimated by 1.55 Hz and 1.33 Hz, respectively.

Performing nonlinear dynamic analysis on this size of a model can be time consuming. Therefore a non-
linear reduced order model (NLROM) was created using the implicit condensation and expansion method



(ICE) [11]. In this method, the expected nonlinear stiffening effects due to large amplitudes of deforma-
tion are implicitly accounted for using nonlinear static solutions in Abaqus. Using specific levels of applied
modal forces, the resulting deformation is decomposed onto a preselected modal reduction basis, and the
nonlinear stiffness coefficients are determined based on the resulting restoring force and modal displacement
relationship. The ICE method produces an N DOF system of equations in the modal domain as

q̈ + Λq + Nq(q) = 0, (1)

where q stands for the linear modal coordinates. Since this work focuses on the coupling between the two first
fundamental modes, Eq. (1) can be summarized to a 2-DOF system with q = [q1 q2]
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In linear response regimes the system response can be well approximated as uncoupled using the linear
modes of vibration; however, in nonlinear response regimes, the system response now includes both modes
of interest (coupled through Nq(q)). The 2-DOF NLROM created using the ICE method is used to find the
NNMs and study the forced response of the structure as described in Sections 3.2 and 3.4.

3.2 Nonlinear normal modes

In this work, NNMs are defined as non-necessarily synchronous periodic solutions of the conservative equa-
tions of motion (1). A number of numerical algorithms were developed to compute NNMs, as recently
reviewed in Ref. [13]. The method considered here combines shooting and pseudo-arclength continuation
techniques and is freely available in the so-called NNMcont software package [14].

The NNMs of this structure exhibit strong coupled dynamic motions between the bending- and torsion-
dominated LNMs as seen in Fig. 3. At low energies, the deformation of the first NNM (NNM1) and second
NNM (NNM2) match the corresponding LNM shapes. At higher response energies, the NNM deformations
exhibit a veering phenomenon where the deformations are an equal combination of the underlying LNMs,
but are separated by 0.13 Hz. As the response is pushed passed the region of veering, the deformation of
NNM1 resembles the torsion dominated LNM (i.e. LNM2) and NNM2 resembles the bending dominated
LNM shape (i.e. LNM1).

The change in the deformation of the NNMs can also be examined in terms of the first and second LNM
amplitude (Figs. 4(a, b)). For frequencies close to the linear natural frequencies, the amplitude of LNM1
dominates the response of NNM1 whereas the amplitude of LNM2 dominates NNM2. As frequency in-
creases, the LNM contributions to the NNMs are swapped such that NNM1 is dominated by LNM2 and
NNM2 by LNM1.

3.3 Nonlinear force appropriation

The forced damped dynamics of system (1) can be written in linear modal space as

q̈ + Ξq̇ + Λq + Nq(q) = p, (3)

where Ξ = diag(2ζ1ω1, 2ζ2ω2) is the modal damping matrix and p is the modal forcing vector. As was
done in Refs. [15, 10, 16], the energy balance technique can be used to find the multi-point multi-harmonic
input force p that puts the same amount of energy into the structures (Ein/cycle) as is dissipated by damping
(Ediss./cycle). Considering the structure response qnnm(t) at a given NNM, the balance between the input and
dissipated energy per cycle writes∫ T

0
q̇T

nnmΞq̇nnmdt =
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Figure 3: Frequency-energy plot of the nonlinear normal modes of the clamped-clamped cross beam structure
ROM. (–) First NNM; (– –) second NNM. Mode shapes are inset.

(a) (b)

Figure 4: Amplitude of the first (a) and second (b) linear modal coordinates for the nonlinear normal modes
of the clamped-clamped cross beam structure. (–) First NNM; (– –) second NNM.

where the second equality is obtained by fixing the phase of the periodic excitation and ck is the force ampli-
tude vector at the harmonic k. Equation (4) is exploited in Section 3.4 to estimate the forcing coefficients ck
required to balance the damping introduced by Ξ when the system oscillates according to one of its NNM.
In practice, the NNM is not known a priori, so one generally has to tune the input force until the phase
quadrature condition is met.



3.4 Comparison between the NNMs and the forced response

The particular case of an ideal force distribution as given by Equation (4) is studied before investigating other
input force distributions.

The appropriate force is calculated for NNM1 at several response amplitudes. The modal force vector pT =
[p1 p2] includes contributions from both LNMs (p1 6= 0 and p2 6= 0) due to the coupling introduced by
nonlinearity. The response in LNM1 and LNM2 is reported in Figure 5(a) and 5(b), respectively. The
agreement between the peak response, the quadrature condition and the backbone curve of NNM1 (solid-
black) is excellent. The presence of a LNM2 component in the forcing leads to the presence of a second
resonance peak and a phase quadrature condition around NNM2 (Figure 5(b)). Such a peak and phase
transition are not visible in the response of LNM1 because the response regimes for which NNM2 includes
significant LNM1 contributions are not yet reached.

(a) (b)

Figure 5: Amplitude of the first (a) and second (b) linear modal coordinates for the nonlinear normal modes
of the clamped-clamped cross beam structure. First (–) and second (– –) NNM backbone curve. The colour
code represents the phase lag φ between the LNM response and the excitation. Blue: φ < 89.7◦; green:
φ = 90◦; red: φ > 90.3◦.

The particular case of an excitation applied to a single LNM is now investigated. Figure 6(a, b) shows for
three force amplitudes the response of the structure when the excitation is distributed according to LNM1
(i.e., pT = [p1 0], p1 6= 0). The response in LNM1 (Fig. 6(a)) shows a first resonance peak close to NNM1
backbone curve. For the low-amplitude response curve, the NNM, the phase quadrature condition, and the
resonance peak are all in good agreement with each other. For larger response amplitudes, however, the
NNM starts to deviate from the peak response and the quadrature condition no longer lines up with the peak
amplitude nor the NNM. This is a direct consequence of the absence of LNM2 components in the excitation.
Similar observations are made when looking at the response in LNM2 (Figure 6(b)). Although NNM1 and
the phase quadrature condition are in good agreement, they do not match the forced response resonance peak.

As seen in Section 3.2, the second NNM can contain strong LNM1 contributions when at high vibration
amplitudes (see Figure 3). This leads to the presence of a resonance peak around NNM2 backbone curve for
high-amplitude responses (Figure 6(a)).

The high-amplitude response curve in Figure 6(a) shows a second phase transition, occurring between the
first and second resonance peak. This transition is the consequence of a Neimark-Sacker bifurcation at
which periodic solutions lose stability and quasi-periodic oscillations become visible. This phenomenon



was already numerically and experimentally observed for this structure in Ref. [17]. The resonant response
around NNM2 is not visible for the first two force levels. It is in fact detached from the main forced response
curve and would therefore form loops of isolated solutions in Figures 6(a) and 6(b) (not represented here for
clarity).

The response of the structure in LNM2 (Figure 6(b)) clearly highlights the presence of the coupling terms
between LNM1 and LNM2 introduced by nonlinearity. If the structure was linear, LNM2 response would
be identically zero and the second resonance peak in (Figure 6(a)) would be absent. A consequence of this
coupling is that a quadrature condition at NNM2 can be reached at low amplitude, i.e. when NNM2 is
dominated by LNM2. However, this quadrature region does not correspond to any resonance peak.

The response of the structure to a forcing in LNM2 (pT = [0 p2], p2 6= 0) is presented in Figure 6(c,
d). The intermediate-amplitude response curve in LNM2 presents a first resonance peak located between
NNM1 and NNM2 backbone curves. Furthermore, this peak does not correspond to any phase transition
in the forced response. For higher response amplitudes, the increasing importance of LNM2 in NNM1 (cf.
Section 3.2) leads to a resonance peak and a quadrature condition that matches well the backbone curve
of NNM1. At this force level, LNM1 also shows a resonance peak close to NNM1. The disagreement
between the resonance peak and NNM comes from the absence of LNM1 contributions in the applied force.
Furthermore, the solution curve does not present any clear phase transition. This shows that excited modes
(equivalently, degrees of freedom) can be in quadrature with the excitation whereas the other modes (DOFs)
are not.

4 Experimental results

To demonstrate the importance of the applied excitation in the experimental identification of NNMs, the
structure was tested using a single shaker attached to the main beam, providing pure bending excitation. The
CBC technique described in Ref. [8] was used to measure the NNMs of the structure. The method combines
feedback control and path following techniques in order to follow the steady-state responses of the system as
parameters are varied. In this paper, the CBC method was exploited to track the periodic responses that are
in quadrature with the excitation as a function of the response amplitude. The π

2 -quadrature condition was
experimentally reached within ±0.005 rad.

The feedback control system considered in CBC was a simple linear proportional-plus-derivative feedback
control system with fixed gains. The reference signal was chosen as the velocity integrated from an ac-
celerometer located on the cross beam in order to capture both bending and torsion motions. The obtained
velocity signal was high-pass filtered using a fourth-order Butterworth filter in order to remove the DC com-
ponent introduced by time integration. The filter cut-off frequency was chosen at 8 Hz, which represented
a good compromise between the introduced delay and the stability of the filter. Proportional and derivative
gains were kept constant and equal to 0.5 and -0.0025 throughout the tests.

Fig. 7(a) shows in a response frequency – response amplitude plot the first NNM (–) and second NNM (–
–) of the clamped-clamped cross beam. For both NNMs, the resonance frequency of the smallest-amplitude
data point is in good agreement with the linear natural frequencies identified using impact-hammer data (see
Table 1). This shows that CBC has discarded effectively the influence of the excitation system. Up to ap-
proximately 20 m/s2, the resonance frequency of both NNMs decreases for increasing vibration amplitudes.
This is attributed to gravity-induced static deformations and imperfect clamping boundary conditions. For
vibration amplitudes larger than 20 m/s2, the geometrical coupling that exists between the bending and axial
beam deformations introduces hardening nonlinearities and the resonance frequencies increase, as theoreti-
cally predicted and modeled in Section 3.2.

Both NNMs presented in Fig. 7(a) are incomplete and could only be captured in regions where the response is
dominated by bending motions. This is clearly illustrated in Figure 7(b) where both NNMs are projected onto
LNM1 and LNM2. NNM1 was captured up to approximately 16.4 Hz, frequency at which the LNM1 (i.e.



(a) (b)

(c) (d)

Figure 6: Forced response curves for an input force distributed according to LNM1 (a, b) and LNM2 (c, d).
First (–) and second (– –) NNM backbone curve. The colour code represents the phase lag φ between the
LNM response and the excitation. Blue: φ < 89.7◦; green: φ = 90◦; red: φ > 90.3◦.

bending) contribution starts to increase less rapidly. As discussed in Section 3.2, this region is characterised
by a rapid increase of LNM2 contribution, which will eventually dominate the NNM motion (see Figures 3
and 4). The quadrature condition could no longer be found beyond 16.4 Hz.

The second NNM was captured in two regions, one at low amplitudes and one at high amplitudes of vibration.
As in Figure 6(b), the quadrature condition between the force and the response was achieved. However, as
numerically predicted, the response appears to be primarily in LNM1 whereas it should be in LNM2. This
is a consequence of the inappropriate forcing, which also prevented to find the correct identification of the
quadrature conditions and trace out NNM2 for higher response amplitudes.

The theoretical investigations conducted in Section 3.2 predicts a region where NNM2’s response is primarily
in bending (see Figure 3). This region was reached using CBC embedded feedback control system and the
NNM was then traced for decreasing vibration amplitudes. At approximately 16.6 Hz, the feedback control
system used in CBC became unstable and the experiment was interrupted. This instability is the result of an



(a) (b)

Figure 7: Backbone curves extracted experimentally using CBC. (a) Response amplitude of the accelerome-
ter used in the feedback controller. First (–) and second (– –) NNMs. (b) Response projected on to the first
(–) and second (– –) linear normal modes.

actuation applied in bending only which therefore cannot influence the torsion dynamics.

5 Conclusions

This paper provides a look at the importance of identifying the phase resonance conditions in the forced
response of a nonlinear system with 1-1 coupling. Without appropriate forcing, resonance peaks will include
amplitude specific coupled dynamic behavior, whereas appropriated forcing conditions provide resonance
peaks which follow a NNM. This highlights an important feature needed in multi-input nonlinear force
appropriation techniques.
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