7,487 research outputs found

    Journeys & Notes: Designing Social Computing for Non-Places

    Full text link
    In this work we present a mobile application we designed and engineered to enable people to log their travels near and far, leave notes behind, and build a community around spaces in between destinations. Our design explores new ground for location-based social computing systems, identifying opportunities where these systems can foster the growth of on-line communities rooted at non-places. In our work we develop, explore, and evaluate several innovative features designed around four usage scenarios: daily commuting, long-distance traveling, quantified traveling, and journaling. We present the results of two small-scale user studies, and one large-scale, world-wide deployment, synthesizing the results as potential opportunities and lessons learned in designing social computing for non-places.Comment: CHI '16 Proceedings of the 2016 CHI Conference on Human Factors in Computing System

    Corundum-Hibonite Inclusions and the Environments of High Temperature Processing in the Early Solar System

    Get PDF
    Calcium, Aluminum-rich inclusions (CAIs) are composed of the suite of minerals predicted to be the first to condense from a cooling gas of solar composition [1]. Yet, the first phase to condense, corundum, is rare in CAIs, having mostly reacted to form hibonite followed by other phases at lower temperatures. Many CAIs show evidence of complex post-formational histories, including condensation, evaporation, and melting [e.g. 2, 3]. However, the nature of these thermal events and the nebular environments in which they took place are poorly constrained. Some corundum and corundum-hibonite grains appear to have survived or avoided these complex CAI reprocessing events. Such ultra-refractory CAIs may provide a clearer record of the O isotopic composition of the Sun and the evolution of the O isotopic composition of the planet-forming region [4-6]. Here we present in situ O and Mg isotopic analyses of two corundum/hibonite inclusions that record differing formation histories

    Animal-sediment interactions: the effect of ingestion and excretion by worms on mineralogy

    No full text
    International audienceBy controlled experiments that simulate marine depositional environments, it is shown that accelerated weathering and clay mineral authigenesis occur during the combined process of ingestion, digestion and excretion of fine-grained sediment by two species of annelid worms. Previously characterized synthetic mud was created using finely ground, low-grade metamorphic slate (temperature approximately 300°C) containing highly crystalline chlorite and muscovite. This was added to experiment and control tanks along with clean, wind-blown sand. Faecal casts were collected at regular intervals from the experimental tanks and, less frequently, from the control tanks. Over a period of many months the synthetic mud (slate) proved to be unchanged in the control tanks, but was significantly different in faecal casts from the experimental tanks that contained the worms Arenicola marina and Lumbricus terrestris. Chlorite was preferentially destroyed during digestion in the gut of A. marina. Both chlorite and muscovite underwent XRD peak broadening with a skew developing towards higher lattice spacing, characteristic of smectite formation. A neoformed Fe-Mg-rich clay mineral (possibly berthierine) and as-yet undefined clay minerals with very high d-spacing were detected in both A. marina and L. terrestris cast samples. We postulate that a combination of the low pH and bacteria-rich microenvironment in the guts of annelid worms may radically accelerate mineral dissolution and clay mineral precipitation processes during digestion. These results show that macrobiotic activity significantly accelerates weathering and mineral degradation as well as mineral authigenesis. The combined processes of sediment ingestion and digestion thus lead to early diagenetic growth of clay minerals in clastic sediments

    Applicability and Utility of the Astromaterials X-Ray Computed Tomography Laboratory at Johnson Space Center

    Get PDF
    The Astromaterials Acquisition and Curation Office at NASAs Johnson Space Center is responsible for curating all of NASAs astromaterial sample collections (i.e. Apollo samples, Luna Samples, Antarctic Meteorites, Cosmic Dust Particles, Microparticle Impact Collection, Genesis solar wind atoms, Stardust comet Wild-2 particles, Stardust interstellar particles, and Hayabusa asteroid Itokawa particles) [1-3]. To assist in sample curation and distribution, JSC Curation has recently installed an X-ray computed tomography (XCT) scanner to visualize and characterize samples in 3D. [3] describes the instrumental set-up and the utility of XCT to astromaterials curation. Here we describe some of the current and future projects and illustrate the usefulness of XCT in studying astromaterials

    A FIB/TEM/Nanosims Study of a Wark-Lovering Rim on an Allende CAI

    Get PDF
    Ca- Al-rich inclusions (CAIs) are commonly surrounded by Wark-Lovering (WL) rims - thin (approx. 50 micrometers) multilayered sequences - whose mineralogy is dominated by high temperature minerals similar to those that occur in the cores of CAIs [1]. The origins of these WL rims involved high temperature events in the early nebula such as condensation, flashheating or reaction with a nebular reservoir, or combinations of these processes. These rims formed after CAI formation but prior to accretion into their parent bodies. We have undertaken a coordinated mineralogical and isotopic study of WL rims to determine the formation conditions of the individual layers and to constrain the isotopic reservoirs they interacted with during their history. We focus here on the spinel layer, the first-formed highest- temperature layer in the WL rim sequence. Results and Discussion: We have performed mineralogical, chemical and isotopic analyses of an unusual ultrarefractory inclusion from the Allende CV3 chondrite (SHAL) consisting of an approx. 500 micrometers long single crystal of hibonite and co-existing coarsegrained perovskite. SHAL is partially surrounded by WL rim. We previously reported on the mineralogy, isotopic compositions and trace elements in SHAL [2-4]. The spinel layer in the WL rim is present only on the hibonite and terminates abruptly at the contact with the coarse perovskite. This simple observation shows that the spinel layer is not a condensate in this case (otherwise spinel would have condensed on the perovskite as well). The spinel layer appears to have formed by gas-phase corrosion of the hibonite by Mg-rich vapors such that the spinel layer grew at the expense of the hibonite. We also found that the spinel layer has the same 16Orich composition as the hibonite. The spinel layer is polycrystalline and individual crystals do not show a crystallographic relationship with the hibonite. An Al-diopside layer overlies the spinel layer, and is present on both the hibonite and perovskite. While the spinel is 16O-rich, WL-rim perovskite and pyroxene are 16O-poor. This isotopic heterogeneity likely reflects O isotopic equilibration of WL-rim perovskite and pyroxene with a planetary O isotopic reservoir after the WL rim formation. The hibonite is zoned and contains wt.% levels of Ti, Mg and Fe in contact with the Fe-bearing spinel (Sp60Hc40) in the WL rim. The Fe enrichment in spinel is likely related to the Na-Fe metasomatism that is ubiquitous in Allende. Conclusions: The petrography and microstructure of the spinel layer in a WL rim sequence shows that it formed by gas phase reactions at high temperature in the nebula. The oxygen isotopic composition of the spinel indicates that this WL rim layer formed in the same (or similar) nebular gas reservoir as the host CAI

    Model-based spacecraft and mission design for the evaluation of technology

    Get PDF
    In order to meet the future vision of robotic missions, engineers will face intricate mission concepts, new operational approaches, and technologies that have yet to be developed. The concept of smaller, model driven projects helps this transition by including life-cycle cost as part of the decision making process. For example, since planetary exploration missions have cost ceilings and short development periods, heritage flight hardware is utilized. However, conceptual designs that rely solely on heritage technology will result in estimates that may not be truly representative of the actual mission being designed and built. The Laboratory for Spacecraft and Mission Design (LSMD) at the California Institute of Technology is developing integrated concurrent models for mass and cost estimations. The purpose of this project is to quantify the infusion of specific technologies where the data would be useful in guiding technology developments leading up to a mission. This paper introduces the design-to-cost model to determine the implications of various technologies on the spacecraft system in a collaborative engineering environment. In addition, comparisons of the benefits of new or advanced technologies for future deep space missions are examined

    Altered Cerebellar Short-Term Plasticity but No Change in Postsynaptic AMPA-Type Glutamate Receptors in a Mouse Model of Juvenile Batten Disease

    Get PDF
    Juvenile Batten disease is the most common progressive neurodegenerative disorder of childhood. It is associated with mutations in the CLN3 gene, causing loss of function of CLN3 protein and degeneration of cerebellar and retinal neurons. It has been proposed that changes in granule cell AMPA-type glutamate receptors (AMPARs) contribute to the cerebellar dysfunction. In this study we compared AMPAR properties and synaptic transmission in cerebellar granule cells from wild-type and Cln3 knockout mice. In Cln3Δex1–6 cells the amplitude of AMPA-evoked whole-cell currents was unchanged. Similarly, we found no change in the amplitude, kinetics, or rectification of synaptic currents evoked by individual quanta, or in their underlying single-channel conductance. We found no change in cerebellar expression of GluA2 or GluA4 protein. By contrast, we observed a reduced number of quantal events following mossy-fiber stimulation in Sr2+, altered short-term plasticity in conditions of reduced extracellular Ca2+, and reduced mossy fiber vesicle number. Thus, while our results suggest early presynaptic changes in the Cln3Δex1–6 mouse model of juvenile Batten disease, they reveal no evidence for altered postsynaptic AMPARs
    corecore