493 research outputs found
The Broad-Band Spectrum and Infrared Variability of the Magnetar AXP 1E1048.1-5937
We present photometry of the Anomalous X-ray pulsar 1E1048.1-5937 in the
infrared and optical, taken at Magellan and the VLT. The object is detected in
the I, J and Ks bands under excellent conditions. We find that the source has
varied greatly in its infrared brightness and present these new magnitudes. No
correlation is found between the infrared flux and spin-down rate, but the
infrared flux and X-ray flux may be anti-correlated. Assuming nominal reddening
values, the resultant spectral energy distribution is found to be inconsistent
with the only other AXP SED available (for 4U0142+61). We consider the effect
of the uncertainty in the reddening to the source on its SED. We find that
although both the X-ray and infrared fluxes have varied greatly for this
source, the most recent flux ratio is remarkably consistent with what is is
found for other AXPs. Finally, we discuss the implications of our findings in
the context of the magnetar model.Comment: 21 pages, 5 eps figures. Submitted to Ap
A Theoretical Light-Curve Model for the Recurrent Nova V394 Coronae Austrinae
A theoretical light curve for the 1987 outburst of V394 Coronae Austrinae
(V394 CrA) is modeled to obtain various physical parameters of this recurrent
nova. We then apply the same set of parametersto a quiescent phase and confirm
that these parameters give a unified picture of the binary. The early visual
light curve (1-10 days after the optical maximum) is well reproduced by a
thermonuclear runaway model on a very massive WD close to the Chandrasekhar
limit (1.37 +- 0.01 M_sun). The ensuing plateau phase (10-30 days) is also
reproduced by the combination of a slightly irradiated MS and a fully
irradiated flaring-up disk with a radius ~1.4 times the Roche lobe size. The
best fit parameters are the WD mass 1.37 M_sun, the companion mass 1.5 M_sun
(0.8-2.0 M_sun is acceptable), the inclination angle of the orbit i~65-68
degree, and the flaring-up rim ~0.30 times the disk radius. The envelope mass
at the optical peak is estimated to be ~6 x 10^{-6} M_sun, which indicates an
average mass accretion rate of 1.5 x 10^{-7} M_sun yr^{-1} during the quiescent
phase between the 1949 and 1987 outbursts. In the quiescent phase, the observed
light curve can be reproduced with a disk size of 0.7 times the Roche lobe size
and a rather slim thickness of 0.05 times the accretion disk size at the rim.
About 0.5 mag sinusoidal variation of the light curve requires the mass
accretion rate higher than ~1.0 x 10^{-7} M_sun yr^{-1}, which is consistent
with the above estimation from the 1987 outburst. These newly obtained
quantities are exactly the same as those predicted in a new progenitor model of
Type Ia supernovae.Comment: 9 pages including 4 figures, to appear in the Astrophysical Journal,
Part
Observation of a short-lived pattern in the solar chromosphere
In this work we investigate the dynamic behavior of inter-network regions of
the solar chromosphere. We observed the chromosphere of the quiet Sun using a
narrow-band Lyot filter centered at the Ca II K 2v emission peak with a
bandpass of 0.3A. We achieved a spatial resolution of on average 0.7" at a
cadence of 10s. In the inter-network we find a mesh-like pattern that features
bright grains at the vertices. The pattern has a typical spatial scale of 1.95"
and a mean evolution time scale of 53s with a standard deviation of 10s. A
comparison of our results with a recent three-dimensional radiation
hydrodynamical model implies that the observed pattern is of chromospheric
origin. The measured time scales are not compatible with those of reversed
granulation in the photosphere although the appearance is similar. A direct
comparison between network and inter-network structure shows that their typical
time scales differ by at least a factor of two. The existence of a rapidly
evolving small-scale pattern in the inter-network regions supports the picture
of the lower chromosphere as a highly dynamical and intermittent phenomenon.Comment: Letter A&A 4 pages 5 figure
New Insights on Interstellar Gas-Phase Iron
In this paper, we report on the gas-phase abundance of singly-ionized iron
(Fe II) for 51 lines of sight, using data from the Far Ultraviolet
Spectroscopic Explorer (FUSE). Fe II column densities are derived by measuring
the equivalent widths of several ultraviolet absorption lines and subsequently
fitting those to a curve of growth. Our derivation of Fe II column densities
and abundances creates the largest sample of iron abundances in moderately- to
highly-reddened lines of sight explored with FUSE, lines of sight that are on
average more reddened than lines of sight in previous Copernicus studies. We
present three major results. First, we observe the well-established correlation
between iron depletion and and also find trends between iron depletion
and other line of sight parameters (e.g. f(H_2), E_(B-V), and A_V), and examine
the significance of these trends. Of note, a few of our lines of sight probe
larger densities than previously explored and we do not see significantly
enhanced depletion effects. Second, we present two detections of an extremely
weak Fe II line at 1901.773 A in the archival STIS spectra of two lines of
sight (HD 24534 and HD 93222). We compare these detections to the column
densities derived through FUSE spectra and comment on the line's f-value and
utility for future studies of Fe II. Lastly, we present strong anecdotal
evidence that the Fe II f-values derived empirically through FUSE data are more
accurate than previous values that have been theoretically calculated, with the
probable exception of f_1112.Comment: Accepted for publication in ApJ, 669, 378; see ApJ version for small
updates. 53 total pages (preprint format), 7 tables, 11 figure
Optical Detection of Two Intermediate Mass Binary Pulsar Companions
We report the detection of probable optical counterparts for two Intermediate
Mass Binary Pulsar (IMBP) systems, PSR J1528-3146 and PSR J1757-5322. Recent
radio pulsar surveys have uncovered a handful of these systems with putative
massive white dwarf companions, thought to have an evolutionary history
different from that of the more numerous class of Low Mass Binary Pulsars
(LMBPs) with He white dwarf companions. The study of IMBP companions via
optical observations offers us several new diagnostics: the evolution of main
sequence stars near the white-dwarf-neutron star boundary, the physics of white
dwarfs close to the Chandrasekhar limit, and insights into the recycling
process by which old pulsars are spun up to high rotation frequencies. We were
unsuccessful in our attempt to detect optical counterparts of PSR J1141-6545,
PSR J1157-5112, PSR J1435-6100, and PSR J1454-5846.Comment: 9 pages, 2 figures, accepted for publication in ApJ
The Detection of Outflows in the IR-Quiet Molecular Core NGC 6334 I(North)
We find strong evidence for outflows originating in the dense molecular core
NGC 6334 I(North): a 1000 Msol molecular core distinguished by its lack of HII
regions and mid-IR emission. New observations were obtained of the SiO 2-1 and
5-4 lines with the SEST 15-m telescope and the H2 (1-0) S(1) line with the ESO
2.2-m telescope. The line profiles of the SiO transitions show broad wings
extending from -50 to 40 km/s, and spatial maps of the line wing emission
exhibit a bipolar morphology with the peaks of the red and blue wing separated
by 30". The estimated mass loss rate of the outflow is comparable to those for
young intermediate to high-mass stars. The near-IR images show eight knots of
H2 emission. Five of the knots form a linear chain which is displaced from the
axis of the SiO outflow; these knots may trace shock excited gas along the path
of a second, highly collimated outflow. We propose that I(N) is a rare example
of a molecular core in an early stage of cluster formation.Comment: 4 pages, LaTeX, 3 ps figures, accepted by ApJ
The highly polarized open cluster Trumpler 27
We have carried out multicolor linear polarimetry (UBVRI) of the brightest
stars in the area of the open cluster Trumpler 27. Our data show a high level
of polarization in the stellar light with a considerable dispersion, from to . The polarization vectors of the cluster members appear to be
aligned. Foreground polarization was estimated from the data of some non-member
objects, for which two different components were resolved: the first one
associated with a dust cloud close to the Sun producing
and degrees, and a second component, the main source of
polarization for the cluster members, originated in another dust cloud, which
polarizes the light in the direction of degrees. From a detailed
analysis, we found that the two components have associated values for the first one, and for the other. Due the
difference in the orientation of both polarization vectors, almost 90 degrees
(180 degrees at the Stokes representation), the first cloud (
degrees) depolarize the light strongly polarized by the second one ( degrees).Comment: 12 Pages, 6 Figures, 2 tables (9 Pages), accepted for publication in
A
A Mid-Infrared Study of the Class 0 Cluster in LDN 1448
We present ground-based mid-infrared observations of Class 0 protostars in
LDN 1448. Of the five known protostars in this cloud, we detected two, L1448N:A
and L1448C, at 12.5, 17.9, 20.8, and 24.5 microns, and a third, L1448 IRS 2, at
24.5 microns. We present high-resolution images of the detected sources, and
photometry or upper limits for all five Class 0 sources in this cloud. With
these data, we are able to augment existing spectral energy distributions
(SEDs) for all five objects and place them on an evolutionary status diagram.Comment: Accepted by the Astronomical Journal; 26 pages, 9 figure
Detection of Gravitational Redshift on the Solar Disk by Using Iodine-Cell Technique
With an aim to examine whether the predicted solar gravitational redshift can
be observationally confirmed under the influence of the convective Doppler
shift due to granular motions, we attempted measuring the absolute spectral
line-shifts on a large number of points over the solar disk based on an
extensive set of 5188-5212A region spectra taken through an iodine-cell with
the Solar Domeless Telescope at Hida Observatory. The resulting heliocentric
line shifts at the meridian line (where no rotational shift exists), which were
derived by finding the best-fit parameterized model spectrum with the observed
spectrum and corrected for the earth's motion, turned out to be weakly
position-dependent as ~ +400 m/s near the disk center and increasing toward the
limb up to ~ +600 m/s (both with a standard deviation of sigma ~ 100 m/s).
Interestingly, this trend tends to disappear when the convectiveshift due to
granular motions (~-300 m/s at the disk center and increasing toward the limb;
simulated based on the two-component model along with the empirical
center-to-limb variation) is subtracted, finally resulting in the averaged
shift of 698 m/s (sigma = 113 m/s). Considering the ambiguities involved in the
absolute wavelength calibration or in the correction due to convective Doppler
shifts (at least several tens m/s, or more likely up to <~100 m/s), we may
regard that this value is well consistent with the expected gravitational
redshift of 633 m/s.Comment: 28 pages, 12 figures, electronic materials as ancillary data (table3,
table 4, ReadMe); accepted for publication in Solar Physic
Bragg Coherent Diffraction Imaging for In Situ Studies in Electrocatalysis
Electrocatalysis is at the heart of a broad range of physicochemical applications that play an important role in the present and future of a sustainable economy. Among the myriad of different electrocatalysts used in this field, nanomaterials are of ubiquitous importance. An increased surface area/volume ratio compared to bulk makes nanoscale catalysts the preferred choice to perform electrocatalytic reactions. Bragg coherent diffraction imaging (BCDI) was introduced in 2006 and since has been applied to obtain 3D images of crystalline nanomaterials. BCDI provides information about the displacement field, which is directly related to strain. Lattice strain in the catalysts impacts their electronic configuration and, consequently, their binding energy with reaction intermediates. Even though there have been significant improvements since its birth, the fact that the experiments can only be performed at synchrotron facilities and its relatively low resolution to date (∼10 nm spatial resolution) have prevented the popularization of this technique. Herein, we will briefly describe the fundamentals of the technique, including the electrocatalysis relevant information that we can extract from it. Subsequently, we review some of the computational experiments that complement the BCDI data for enhanced information extraction and improved understanding of the underlying nanoscale electrocatalytic processes. We next highlight success stories of BCDI applied to different electrochemical systems and in heterogeneous catalysis to show how the technique can contribute to future studies in electrocatalysis. Finally, we outline current challenges in spatiotemporal resolution limits of BCDI and provide our perspectives on recent developments in synchrotron facilities as well as the role of machine learning and artificial intelligence in addressing them.Financial support from Brazilian agencies: P.S.F. thanks FAPESP (Grants 2017/11986-5, 2018/20952-0, and 2019/13888-6 (RAV fellowship)), CNPq (Grant136436/2019-6 (RAV fellowship)), Shell, and the strategic importance of the support given by ANP (Brazil’s National Oil, Natural Gas and Biofuels Agency) through the R&D levy regulation. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences Data, Artificial Intelligence and Machine Learning at DOE Scientific User Facilities program under Award No. 34532
- …