2,725 research outputs found

    Autonomic computing architecture for SCADA cyber security

    Get PDF
    Cognitive computing relates to intelligent computing platforms that are based on the disciplines of artificial intelligence, machine learning, and other innovative technologies. These technologies can be used to design systems that mimic the human brain to learn about their environment and can autonomously predict an impending anomalous situation. IBM first used the term ‘Autonomic Computing’ in 2001 to combat the looming complexity crisis (Ganek and Corbi, 2003). The concept has been inspired by the human biological autonomic system. An autonomic system is self-healing, self-regulating, self-optimising and self-protecting (Ganek and Corbi, 2003). Therefore, the system should be able to protect itself against both malicious attacks and unintended mistakes by the operator

    Model of the optical emission of a driven semiconductor quantum dot: phonon-enhanced coherent scattering and off-resonant sideband narrowing

    Get PDF
    We study the crucial role played by the solid-state environment in determining the photon emission characteristics of a driven quantum dot. For resonant driving, we predict a phonon-enhancement of the coherently emitted radiation field with increasing driving strength, in stark contrast to the conventional expectation of a rapidly decreasing fraction of coherent emission with stronger driving. This surprising behaviour results from thermalisation of the dot with respect to the phonon bath, and leads to a nonstandard regime of resonance fluorescence in which significant coherent scattering and the Mollow triplet coexist. Off-resonance, we show that despite the phonon influence, narrowing of dot spectral sideband widths can occur in certain regimes, consistent with an experimental trend.Comment: Published version. 5 pages, 2 figures, plus 4 page supplement. Title changed, figure 1 revised, various edits and additions to the tex

    Modelling exciton-phonon interactions in optically driven quantum dots

    Get PDF
    We provide a self-contained review of master equation approaches to modelling phonon effects in optically driven self-assembled quantum dots. Coupling of the (quasi) two-level excitonic system to phonons leads to dissipation and dephasing, the rates of which depend on the excitation conditions, intrinsic properties of the QD sample, and its temperature. We describe several techniques, which include weak-coupling master equations that are perturbative in the exciton-phonon coupling, as well as those based on the polaron transformation that can remain valid for strong phonon interactions. We additionally consider the role of phonons in altering the optical emission characteristics of quantum dot devices, outlining how we must modify standard quantum optics treatments to account for the presence of the solid-state environment.Comment: Invited Topical Review, 26 pages, 7 figures. V2 - close to published version, 28 pages, 9 figures. Minor changes to text, added a few new references and two new figure

    Autonomous monitoring framework for resource-constrained environments

    Get PDF
    Acknowledgments The research described here is supported by the award made by the RCUK Digital Economy programme to the dot.rural Digital Economy Hub, reference: EP/G066051/1. URL: http://www.dotrural.ac.uk/RemoteStream/Peer reviewedPublisher PD

    Coherent and incoherent dynamics in excitonic energy transfer: correlated fluctuations and off-resonance effects

    Full text link
    We study the nature of the energy transfer process within a pair of coupled two-level systems (donor and acceptor) subject to interactions with the surrounding environment. Going beyond a standard weak-coupling approach, we derive a master equation within the polaron representation that allows for investigation of both weak and strong system-bath couplings, as well as reliable interpolation between these two limits. With this theory, we are then able to explore both coherent and incoherent regimes of energy transfer within the donor-acceptor pair. We elucidate how the degree of correlation in the donor and acceptor fluctuations, the donor-acceptor energy mismatch, and the range of the environment frequency distribution impact upon the energy transfer dynamics. In the resonant case (no energy mismatch) we describe in detail how a crossover from coherent to incoherent transfer dynamics occurs with increasing temperature [A. Nazir, Phys. Rev. Lett. 103, 146404 (2009)], and we also explore how fluctuation correlations are able to protect coherence in the energy transfer process. We show that a strict crossover criterion is harder to define when off-resonance, though we find qualitatively similar population dynamics to the resonant case with increasing temperature, while the amplitude of coherent population oscillations also becomes suppressed with growing site energy mismatch.Comment: 14 pages, 7 figures, builds upon PRL 103, 146404 (2009) (arXiv:0906.0592). Comments welcome. V2 - Section IV shortened to improve presentation, references updated, new Imperial College affiliation added for A. Nazir. Published versio

    Long-lived spin entanglement induced by a spatially correlated thermal bath

    Full text link
    We investigate how two spatially separated qubits coupled to a common heat bath can be entangled by purely dissipative dynamics. We identify a dynamical time scale associated with the lifetime of the dissipatively generated entanglement and show that it can be much longer than either the typical single-qubit decoherence time or the time scale on which a direct exchange interaction can entangle the qubits. We give an approximate analytical expression for the long-time evolution of the qubit concurrence and propose an ion trap scheme in which such dynamics should be observable.Comment: 5 pages, 2 figure

    A general approach to quantum dynamics using a variational master equation: Application to phonon-damped Rabi rotations in quantum dots

    Full text link
    We develop a versatile master equation approach to describe the non-equilibrium dynamics of a two-level system in contact with a bosonic environment, which allows for the exploration of a wide range of parameter regimes within a single formalism. As an experimentally relevant example, we apply this technique to the study of excitonic Rabi rotations in a driven quantum dot, and compare its predictions to the numerical Feynman integral approach. We find excellent agreement between the two methods across a generally difficult range of parameters. In particular, the variational master equation technique captures effects usually considered to be non-perturbative, such as multi-phonon processes and bath-induced driving renormalisation, and can give reliable results even in regimes in which previous master equation approaches fail.Comment: 5 pages, 2 figures. Published version, revised title, minor changes to the tex
    corecore