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We provide a self-contained review of master equation approaches to modelling phonon effects in
optically driven self-assembled quantum dots. Coupling of the (quasi) two-level excitonic system to
phonons leads to dissipation and dephasing, the rates of which depend on the excitation conditions,
intrinsic properties of the QD sample, and its temperature. We describe several techniques, which
include weak-coupling master equations that are perturbative in the exciton-phonon coupling, as well
as those based on the polaron transformation that can remain valid for strong phonon interactions.
We additionally consider the role of phonons in altering the optical emission characteristics of
quantum dot devices, outlining how we must modify standard quantum optics treatments to account
for the presence of the solid-state environment.

I. INTRODUCTION

Self-assembled semiconductor quantum dots (QDs) are
small regions of a semiconductor alloy hosted in a solid-
state matrix composed of a different alloy. They are
formed, for example, when a thin layer of InAs is de-
posited on a GaAs substrate. A difference in lattice con-
stants creates strain, and above a certain critical thick-
ness the InAs begins to spontaneously nucleate creating
dome-shaped ‘islands’ [1–3]. The difference in lattice con-
stants also results in a band-gap difference in the two
materials, and as a consequence charge carriers present
in the dot regions experience confinement in all three
spatial dimensions. QDs are therefore effectively zero-
dimensional systems (hence, quantum dot), and their
charge carriers have discrete energy level structures in
much the same way as electrons in atoms [4–6]. Simi-
larly, they posses transition dipole moments, allowing for
optically mediated excitation, as well as radiative decay
and the emission of photons.

These characteristics have led to semiconductor QDs
being described as solid-state or artificial atoms. Indeed,
many of the phenomena more traditionally associated to
atomic quantum optics have now also been demonstrated
with QDs, including single and entangled photon emis-
sion [7–12], two-photon interference [13–20], driven Rabi
oscillations [21–28], and resonance fluorescence [26, 29–
40]. Taken in conjunction with their solid-state nature
and addressability, QDs have thus received considerable
attention for advanced technological applications. Exam-
ples include high-quality single photon sources for metrol-
ogy and secure communication [35, 36, 41–43], as well
as solid-state and few-emitter lasers [44]. Additionally,
due to their relatively long coherence times, confined
electron or hole spins represent promising realisations of
quantum bits for quantum information processing [45–
54], and also have the potential to act as spin-photon
interfaces [55–57], for example within entanglement gen-
eration schemes [58–62].

Besides the many prospective applications, a single

QD also constitutes an archetypal open quantum sys-
tem [63], consisting of a small number of controllable
degrees of freedom (the electronic states) coupled to a
large uncontrollable environment (the surrounding solid-
state lattice). As such, QDs offer the further possibility
to explore fundamental questions relating to decoherence
and thermalisation in quantum systems.

Despite evident similarities, the coupling of a QD to its
solid-state environment leads to behaviour distinct from
that of an atom coupled only to the electromagnetic field.
Changes in the QD charge configuration perturb the equi-
librium positions of the semiconductor lattice ions, such
that excitons (electron–hole pairs) become sensitive to
bulk phonon modes and thus also the temperature of
the sample. Exciton–phonon coupling has been demon-
strated in a number of experimental settings, including
the observation of emission line broadening in photo-
luminescene spectra [64–66], phonon-induced damping of
coherently pumped excitonic Rabi oscillations [27, 28],
sideband linewidth broadening in resonance fluorescence
spectra [26, 33, 40, 67], and temperature-dependent Rabi
frequency renormalisation [28, 40].

In this article, we shall review master equation ap-
proaches to modelling the effects of exciton-phonon cou-
pling on the dynamical properties of optically driven
QDs. Our review is intended to be pedagogical and
to that end we have attempted to make it relatively
self-contained. We begin in Section II by presenting
relevant theoretical background, before examining weak
exciton-phonon coupling approximations [68–71] in Sec-
tion III. We also look here at the phenomenological pure-
dephasing approximation, highlighting the limited extent
to which it can capture the full dynamics predicted by
more rigorous methods. Motivated by the breakdown of
the weak-coupling treatment in certain regimes, we intro-
duce the polaron transformation [72] in Section IV and
derive an associated master equation [73]. Though the
polaron master equation works well at arbitrary coupling
strength for weak-enough optical addressing, it is less suc-
cessful once the external driving becomes strong due to
the unsuitability of the adiabatic (polaron) basis from
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which it is derived. Section V thus presents a variational
extension to the polaron theory which allows both sig-
nificant driving and strong exciton-phonon interactions
to be examined within a consistent framework [74], and
in fact incorporates both the weak-coupling and polaron
master equations as limiting cases. We explore the ef-
fects of phonons on the optical emission properties of
QD devices in Section VI, with a focus on resonance flu-
orescence spectra. We finish in Section VII with a brief
summary and present some technical details in the Ap-
pendix.

It is worth noting that master equations constitute
only a subset of the techniques that have been success-
fully applied to study QD exciton-phonon interactions
and related systems [75–82]. In order to keep the review
focussed and concise, however, we shall concentrate only
on master equation methods in the following. For the
same reasons, as well as simplicity, we consider almost
exclusively QDs in the absence of cavity interactions.
The subject of phonon effects in cavity-QD systems is
a rich and interesting one, with both master equation
approaches and various others having been developed in
such settings [81–90]. Nevertheless, the examples given
herein are sufficient to elucidate the underlying physics
in which we are interested, as well as to illustrate the
basic theoretical techniques and their many applications.

II. THEORETICAL BACKGROUND

In this section we shall present the theoretical back-
ground necessary to describe the dynamics of a coher-
ently driven QD coupled to its surrounding environment.
We begin by considering the Hamiltonian for a QD driven
by a classical laser field, before outlining how to incorpo-
rate quantised phonon and photon interactions. Finally,
we introduce the theory of open quantum systems and
derive a general master equation with which we shall ex-
plore the detailed QD dynamics in subsequent sections.

A. Driven QD Hamiltonian

We consider a minimal two-level model for the elec-
tronic degrees of freedom of a semiconductor QD, with
basis states defined as |0〉 and |X〉. Here, |0〉 corresponds
to the semiconductor vacuum, i.e. no electrons excited
into the conduction band, while |X〉 represents the exci-
ton state formed from a single electron-hole pair. Such a
simplification is widely used and, broadly speaking, lim-
its our considerations to situations in which any exter-
nal driving field is relatively close to resonance with the
|0〉 to |X〉 transition frequency, such that at the driving
strengths considered higher lying states are not appre-
ciably excited during the dot dynamics. Likewise, the
two-level approximation also limits the ambient temper-
ature such that thermal excitation of higher lying states
is strongly suppressed. It is worth bearing in mind that

even in such situations, fine structure splitting of the sin-
gle exciton state can cause further complications. We
note, however, that these can typically be avoided by
carefully aligning the polarisation of the excitation laser
in order to predominately excite a single exciton tran-
sition (see e.g. Refs. [36, 40]). We shall not, therefore,
consider extensions beyond the two-level QD model in
this review.

Coherent Rabi oscillations may be driven between
states |0〉 and |X〉 through the action of a classical ex-
ternal laser field, providing a means for coherent control
of the QD state. Within the dipole approximation, we
consider the Hamiltonian (we set ~ = 1 throughout)

HQD−laser = εX |X〉〈X| − d ·E(t), (1)

where εX is the energy difference between the QD ground
and excited state, d is the dot dipole operator, and
E(t) = εE0 cos(ωlt) is a monochromatic field of frequency
ωl, amplitude E0, and unit polarisation vector ε. De-
composing the dipole operator in terms of our QD basis
states, we may write d = 〈0|d|X〉|0〉〈X|+〈X|d|0〉|X〉〈0|,
where we have assumed zero permanent dipole moment
and used the fact that the dipole operator has odd par-
ity to set 〈0|d|0〉 = 〈X|d|X〉 = 0 [91–93]. The field thus
drives transitions between the two QD basis states. As-
suming the dot dipole matrix element 〈0|d|X〉 to be real,
we may then write Eq. (1) in the form

HQD−laser = εX |X〉〈X|+ Ω cos(ωlt)(|0〉〈X|+ |X〉〈0|),
(2)

where we have defined the Rabi frequency as Ω = −E0ε ·
〈0|d|X〉, which quantifies the dot-field coupling strength.
As defined here, the Rabi frequency is time-independent,
which is appropriate for continuous-wave driving. Of
course, it is also possible to consider pulsed excitation
by defining a time-varying field amplitude, in which case
the Rabi frequency becomes time-dependent as well.

Even in the continuous-wave case, the oscillatory time
dependence in Eq. (2) is not as straightforward to work
with as we would like. However, as stated earlier, we are
considering situations in which the driving field is close to
resonance. This allows us to simplify the form of Eq. (2)
by making a rotating-wave approximation to remove fast
oscillating terms. Transforming to a frame rotating at
frequency ωl via

H ′ = U(t)HQD−laserU
†(t)− iU(t)

(
∂

∂t
U†(t)

)
, (3)

with U(t) = eiωl|X〉〈X|t, gives

H ′ = (εX − ωl) |X〉 〈X|

+
Ω

2
(eiωlt + e−iωlt)(e−iωlt |0〉 〈X|+ eiωlt |X〉 〈0|).

(4)

Neglecting fast oscillating terms at frequencies ±2ωl (the
rotating-wave approximation), we then find the simple
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time-independent form

HRWA = δ |X〉 〈X|+ Ω

2
(|0〉 〈X|+ |X〉 〈0|), (5)

where we have defined δ = εX−ωl as the detuning of the
driving frequency from resonance. The validity of the
rotating-wave approximation relies upon the inequalities
δ � ωl and Ω � ωl being satisfied. As typical semicon-
ductor band gaps are of the order of 1 eV (i.e. εX ∼ 1 eV),
we can safely explore detunings and Rabi frequencies up
to meV scales without the rotating-wave approximation
breaking down.

B. Exciton-phonon interactions

Having outlined how we may describe the optical con-
trol of a QD in isolation, we would now like to consider
interactions with the large number of surrounding en-
vironmental degrees of freedom that will inevitably be
present in any real QD sample. The aim of this section
will be to justify an appropriate form for the Hamiltonian
governing QD exciton-phonon interactions (rather than
a rigorous derivation), the dynamical treatment of which
forms the main focus for much of the remaining review.
Coupling between the QD and quantised electromagnetic
field modes will be considered subsequently.

Lattice vibrations, or phonons, are ubiquitous in solid-
state systems. Within the harmonic approximation the
free phonon Hamiltonian takes the form

Hph =
∑
k

ωkb
†
kbk, (6)

where b†k (bk) are creation (annihilation) operators for
modes of wavevector k and frequency ωk. This Hamilto-
nian is obtained by considering small displacements from
equilibrium in a three-dimensional array of ions with
nearest neighbour interactions, truncating the interac-
tions at second order in the displacements, then defining
and quantising normal modes [91, 94, 95].

The excitation of an electron from the valence to the
conduction band modifies the charge configuration within
the semiconductor crystal, hence altering the equilibrium
positions of the lattice ions and giving rise to a coupling
between excitons and lattice phonons. Assuming the in-
teraction between an electron and an ion at positions r
and R, respectively, depends only on their separation, we
may write

He−ion =

∫
dr%̂(r)

∑
m

Ve−ion(r−Rm), (7)

where we integrate over the electron charge density op-

erator in the solid %̂(r) =
∑
jj′ ψ

∗
j (r)ψj′(r)c†jcj′ and the

sum runs over all ions. Here, an electron with wavefunc-

tion ψj(r) has creation (annihilation) operator c†j (cj). In
order to make the ion displacements explicit, we now de-
compose their positions as Rm = R0

m+Qm, where R0
m is

the ion equilibrium position and Qm is the ion displace-
ment (assumed small). Applying a Taylor expansion then
yields∑

m

Ve−ion ≈
∑
m

[
V (r−R0

m)−Qm ·∇V (r−R0
m)
]
,

(8)

where we have ignored terms of order Q2
m and higher.

The first term in Eq. (8) is simply the periodic potential
experienced by the electrons in the unperturbed lattice,
which gives rise to Bloch functions. As we have already
defined our excitonic basis, we do not need to consider
this term further. The second term, however, constitutes
a linear electron-phonon interaction brought about by
the ion displacements:

Vep = −
∑
m

Qm ·∇V (r−R0
m). (9)

The free phonon Hamiltonian is defined in terms of a sum
over wavevectors, hence we consider the Fourier decom-
position V (r) = N−1

∑
q v(q)eiq·r and write

Vep = − i

N

∑
q

∑
m

Qme
−iq·R0

m · qv(q)eiq·r

= − i√
N

∑
q

Qq · qv(q)eiq·r, (10)

where Qq = (1/
√
N)
∑
mQme

−iq·R0
m . The phonon

wavevectors k are defined only within the first Brillouin
zone [91, 94], whereas the vectors q are defined every-
where. We can relate the two through the reciprocal lat-
tice vector G. However, as we are considering only low
energy excitations of our system, we shall assume that
they couple only to states within the first Brillouin zone,
and thus simply replace q by k. The displacement oper-
ator Qk may then be written in terms of phonon creation

and annihilation operators as Qk = (i/
√

2mωk)(bk+b†−k)
for ions of mass m, yielding

Vep =
∑
k

1√
2mNωk

(bk + b†−k)|k|v(k)eik·r, (11)

where we consider an isotropic system such that Vep

is only non-zero for longitudinally polarised phonons
(i.e. polarisation parallel to k). From Eq. (7) we then find
that the electron-phonon interaction Hamiltonian can be
written as

Hep =
∑
k

Mk%̂(k)(bk + b†−k), (12)

with %̂(k) =
∫

dr%̂(r)eik·r and Mk = |k|v(k)/
√

2mNωk.
For the arsenide systems in which we are interested, the
dominant coupling mechanism is known as the deforma-
tion potential, and is given to lowest order by the simple
phenomenological approximation of replacing v(k) by ex-
perimentally determined constants Dc and Dv relating to
the conduction and valence bands, respectively [72, 91].



4

In the two-level QD approximation we consider only
the states |0〉 and |X〉, with wavefunctions ψ0(r) and
ψX(r), respectively. We define the form factors %00(k) =
〈0|%̂(k)|0〉 =

∫
dr|ψ0(r)|2eik·r (electron in the valence

band) and %XX(k) = 〈X|%̂(k)|X〉 =
∫

dr|ψX(r)|2eik·r
(electron in the conduction band). The ground to ex-
cited state splitting εX is much larger than the phonon
frequencies under consideration, hence the off-diagonal
terms are small and may be neglected. Subtracting a
term proportional to the identity, we then obtain

Hep = |X〉〈X|
∑
k

gk(bk + b†−k), (13)

where

gk = M
(X)
k %XX(k)−M (0)

k %00(k), (14)

defines the coupling constants, with M
(0)
k =

|k|Dv/
√

2mNωk and M
(X)
k = |k|Dc/

√
2mNωk. A

simple phenomenological model for the QD wave-
functions can be given within the envelope function
approximation by assuming spherically symmetric
parabolic potentials for both the conduction and valence
bands. This leads to ψj(r) = (dj

√
π)−3/2 exp (−r2/2d2

j ),
for j = {0, X}, where dj characterises the size of
the wavefunction. Hence %jj(k) = exp (−d2

j |k|2/4),
which allows us to write the exciton-phonon interaction
Hamiltonian in the usual form

Hep = |X〉〈X|
∑
k

gk(bk + b†k), (15)

where gk = |k|/√2mNωk[Dce
−d2X |k|2/4 −Dve

−d20|k|2/4].
In what follows it will be useful to introduce the

exciton–phonon spectral density, defined as

Jph(ω) =
∑
k

g2
kδ(ω − ωk) = Dph(ω)g(ω)2, (16)

which is a measure of the exciton–phonon coupling
strength weighted by the phonon density of states
Dph(ω). Taking dX = d0 = d for simplicity, converting
the sum into an integral via

∑
k → V/(2π)3

∫
dk, and

assuming linear dispersion ωk = c|k| with c the speed of
sound, we find

Jph(ω) = αω3e−ω
2/ω2

c , (17)

where α = V (Dc−Dv)
2/(4π2mNc5) and the cut-off fre-

quency is ωc =
√

2c/d. We shall consider the phonon
spectral density to take this form throughout.

C. Exciton-photon interactions

In addition to interactions with lattice phonons, QDs
are also coupled to surrounding electromagnetic field

modes. In the case of the continuum (free) electromag-
netic field this gives rise to spontaneous photon emission
processes via electron-hole recombination, limiting the
QD exciton lifetime. In contrast, for QDs within electro-
magnetic cavities, interactions between the dot and the
discrete field modes can be coherent, resulting in joint
exciton-photon eigenstates known as polaritons. Loss of
excitation then occurs via non-cavity modes, cavity leak-
age, or both.

In Section II A we considered the coupling between a
two-level QD and a classical field within the dipole ap-
proximation [see Eq. (1)]. We shall now extend this treat-
ment to the case of a QD coupled to a quantised electro-
magnetic field. Let us begin by considering a QD-cavity
system in which the geometry is such that a single field
mode dominates. Within the dipole approximation, we
again write our QD-field interaction as

Hdipole = −d ·E, (18)

where now for a uniform cavity

E = ε

√
ω0

2ε0V
(a+ a†) (19)

is written in terms of quantised field mode operators a
and a†, which define the harmonic cavity Hamiltonian

Hcav = ω0a
†a. (20)

Here, ω0 is the cavity frequency, V is the quantisation
(cavity) volume, and ε is the mode polarisation vector
at the QD location. In analogy to the Rabi frequency in
Eq. (2), we define the coupling constant in the present
case as

u = −
√

ω0

2ε0V
ε · 〈0|d|X〉, (21)

which allows us to write

Hdipole = u(|0〉〈X|+ |X〉〈0|)(a+ a†). (22)

Notice that the coupling scales as u ∼ 1/
√
V , meaning

that the smaller the cavity and more well confined the
mode, the stronger the coupling to the QD. The full QD-
cavity Hamiltonian then becomes

HQD−cav = εX |X〉〈X|+ ω0a
†a

+ u(|0〉〈X|+ |X〉〈0|)(a+ a†), (23)

which is also known as the Rabi Hamiltonian.
As in the case of a classical field, for a QD and cav-

ity close to resonance we may perform a rotating-wave-
approximation, provided that the dot-cavity coupling is
not too strong. These assumptions are usually well sat-
isfied in actual QD-cavity systems, and permit us to ig-
nore the terms |0〉〈X|a and |X〉〈0|a† which are then far
off-resonant. This leads to a QD-cavity Hamiltonian in
Jaynes-Cummings form

HQD−cav = εX |X〉〈X|+ ω0a
†a+ u(|0〉〈X|a† + |X〉〈0|a).

(24)
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As the Jaynes-Cummings Hamiltonian preserves exci-
tation number (a†a + |X〉〈X|) it may be diagonalised
straightforwardly to give manifolds of entangled light-
matter (dressed) states. For example, on resonance
(εX = ω0) the QD-cavity eigenstates can be expressed
as

1√
2
|0, n〉 ± |X,n− 1〉, (25)

split by the Rabi frequency 2u
√
n, where |n〉 denotes

a cavity Fock (number) state satisfying a†a|n〉 = n|n〉.
Note that as the Rabi frequency grows with

√
n, in the

classical limit n � 1 adjacent manifolds are split by al-
most the same amount. For small photon numbers, how-
ever, the splittings are strongly n-dependent.

To generalise to the case of a multimode field,

Hfield =
∑
q

νqa
†
qaq, (26)

we may write our QD-photon interaction Hamiltonian
(within the rotating-wave approximation) as

Hint =
∑
q

uq(|0〉〈X|a†q + |X〉〈0|aq), (27)

where

uq = −
√

ωq

2ε0V
εq · 〈0|d|X〉, (28)

is the coupling strength for mode q and the sum over
mode polarisations is implicit. As stated previously, the
QD-mode coupling increases for well confined modes.
Thus, in the vacuum field case relevant to spontaneous
emission processes, the coupling to each individual mode
is expected to be small even if their combined effect is
significant. Hence, we do not need to consider dressed
states in this situation, and can instead treat the QD-
photon coupling perturbatively. This can be achieved in
the context of open quantum systems theory by deriv-
ing a master equation governing the QD evolution under
the influence of the photon environment. As we shall be
using master equations extensively throughout the rest
of this review to capture the effects of both photon and
phonon environments, in the next section we shall briefly
overview their derivation and the basics of open quantum
systems.

D. Open quantum systems and master equations

We define an open quantum system S as a subsystem
of a larger combined system S + E. Here, E represents
another quantum system, the environment, to which S
is coupled; for example, an exciton (the system) inter-
acting with the vibrational modes of a solid or with the
surrounding electromagnetic field (the environment). We

shall assume that the combined evolution of the system-
plus-environment (S + E) is closed, and so follows unitary
Hamiltonian dynamics. The state of the system S, how-
ever, will evolve not only according to its own internal
Hamiltonian, but also due to interactions with the envi-
ronment E. In this situation, it is generally not possible
to represent the system dynamics by a unitary evolution
operator acting on S alone. Instead, we shall derive a
master equation governing the dynamics of the reduced
density operator ρS(t) = TrE[ρ(t)], which represents the
system state once we trace out the environmental degrees
of freedom. The reduced density operator describes all
accessible information about the system S.

We begin our master equation derivation by writing
the system-environment Hamiltonian as

H = HS +HI +HE, (29)

where we assume that the interaction Hamiltonian HI is
the only part that involves both system and environment
degrees of freedom. It will be this part of the Hamiltonian
that is treated as a perturbation. To make this more
explicit, we now take H0 = HS +HE, and move into the
interaction picture

H̃I(t) = ei(HS+HE)tHIe
−i(HS+HE)t, (30)

where we set t0 = 0. Here, a tilde is used to represent
an operator that has been transformed into the interac-
tion picture, i.e. Õ(t) = eiH0tOe−iH0t. As the combined
system and environment is closed, within the interaction
picture the system-environment density operator evolves
according to

dρ̃(t)

dt
= −i[H̃I(t), ρ̃(t)]. (31)

This equation has the formal solution

ρ̃(t) = ρ(0)− i
∫ t

0

ds[H̃I(s), ρ̃(s)], (32)

which we may substitute back into Eq. (31) to give

dρ̃(t)

dt
= −i[H̃I(t), ρ(0)]−

∫ t

0

ds[H̃I(t), [H̃I(s), ρ̃(s)]].

(33)
Following Ref. 96 we iterate this solution to generate a
series expansion in terms of ρ(0):

ρ̃(t) = ρ(0) +

∞∑
n=1

(−i)n
∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtn

× [H̃I(t1), [H̃I(t2), · · · [H̃I(tn), ρ(0)]] · · · ]. (34)

Taking a trace over the environmental degrees of freedom,
we find

ρ̃S(t) = ρS(0) +

∞∑
n=1

(−i)n
∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtn

× TrE[H̃I(t1), [H̃I(t2), · · · [H̃I(tn), ρS(0)ρE(0)]] · · · ],
(35)
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where we assume ρ(0) = ρS(0)ρE(0) factorises initially.
We may write Eq. (35) in the form

ρ̃S(t) = (1 +W1(t) +W2(t) + · · · )ρS(0),

= W (t)ρS(0), (36)

where

Wn(t) = (−i)n
∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtn

× TrE[H̃I(t1), [H̃I(t2), · · · [H̃I(tn), (·)ρE(0)]] · · · ],
(37)

are superoperators acting on the initial system density
operator. Differentiating with respect to time, we have

dρ̃S(t)

dt
= (Ẇ1(t) + Ẇ2(t) + · · · )ρS(0),

= (Ẇ1(t) + Ẇ2(t) + · · · )W (t)−1ρ̃S(t), (38)

where we have used Eq. (36) and assumed thatW (t) is in-
vertible. Usually, it is convenient (and possible) to define

the interaction Hamiltonian such that TrE[H̃I(t)ρE(0)] =
0, which means that W1(t) = 0 as well. Thus, to second
order, Eq. (38) becomes

dρ̃S(t)

dt
= Ẇ2(t)ρ̃S(t),

= −
∫ t

0

dt1TrE[H̃I(t), [H̃I(t1), ρ̃S(t)ρE(0)]], (39)

which when replacing t1 → t − τ and moving back into
the Schrödinger picture gives

dρS(t)

dt
= −i[HS, ρS(t)]

−
∫ t

0

dτTrE[HI, [H̃I(−τ), ρS(t)ρE(0)]]. (40)

We now decompose our interaction Hamiltonian as

H̃I(t) =
∑
i

Ãi(t)⊗ B̃i(t), (41)

where Ãi(t) = eiHStAie
−iHSt and B̃i(t) = eiHEtBie

−iHEt

are system and environment operators, respectively. Sub-
stituting into Eq. (40) we find

dρS(t)

dt
= −i[HS, ρS(t)]

−
∑
ij

∫ t

0

dτ
(
Cij(τ)[Ai, Ãj(−τ)ρS(t)]

+ Cji(−τ)[ρS(t)Ãj(−τ), Ai]
)
. (42)

Here, we have defined the environmental correlation func-
tions

Cij(τ) = TrE[B̃i(τ)BjρE(0)], (43)

and have also made use of the fact that we shall consider
only stationary (equilibrium) initial environmental states
which satisfy [HE, ρE(0)] = 0. The time-dependence of

the system operators Ãi(τ) may be made explicit by con-
sidering the Fourier decomposition

Ãi(τ) =
∑
ζ

e−iζτAi(ζ), (44)

where the sum extends over all system eigenvalue dif-
ferences. If the environmental correlation functions are
short lived we may extend the upper limit of integra-
tion in Eq. (42) to infinity to give the Markovian master
equation

dρS(t)

dt
= −i[HS, ρS(t)]

−
∑
ij

∫ ∞
0

dτ
(
Cij(τ)[Ai, Ãj(−τ)ρS(t)]

+ Cji(−τ)[ρS(t)Ãj(−τ), Ai]
)
. (45)

Note that this is equivalent to taking the lower limit in
Eq. (39) to −∞, such that it no longer contains any refer-
ence to a particular preparation at t = 0. The evolution
then depends only on the present state of the system,
rather than its history, as expected for a Markovian pro-
cess.

For a decomposition of the interaction Hamiltonian in

terms of Hermitian operators, i.e. Ãi(τ) = Ã†i (τ) and

B̃i(τ) = B̃†i (τ), we may use Eq. (44) to write the master
equation in a slightly neater form

dρS(t)

dt
= −i[HS , ρS(t)]

− 1
2

∑
ij

∑
ξ

γij(ζ)[Ai, Aj(ζ)ρS(t)− ρS(t)A†j(ζ)]

−i
∑
ij

∑
ζ

Sij(ζ)[Ai, Aj(ζ)ρS(t) + ρS(t)A†j(ζ)],

(46)

where A†j(ζ) = Aj(−ζ) and we have defined the rates
and energy shifts as the real and imaginary components
of the response functions

Kij(ζ) =

∫ ∞
0

dτCij(τ)eiζτ

=
1

2
γij(ζ) + iSij(ζ), (47)

such that γij(ζ) = 2Re[Kij(ζ)] and Sij(ζ) = Im[Kij(ζ)].

E. Spontaneous emission

As an example of the utility of the master equation for-
malism, we return to the case of a QD (weakly) coupled
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to the continuum vacuum photon field outlined previ-
ously. Here, we have HS = εX |X〉〈X|, HE =

∑
q νqa

†
qaq,

and HI =
∑

q uq(σ−a†q + σ+aq), where we have defined

σ− = |0〉〈X| and σ+ = |X〉〈0|. Moving into the interac-
tion picture, we write

H̃I(t) = Ã1(t)B̃1(t) + Ã2(t)B̃2(t), (48)

where Ã1(t) = σ−e−iεXt, Ã2(t) = σ+e
iεXt, B̃1(t) =∑

q uqa
†
qe
iνqt, and B̃2(t) =

∑
q uqaqe

−iνqt (note
that this is not a decomposition in terms of Her-
mitian operators). Taking the initial environmental
state to be the multimode vacuum, we find that the
only non-zero bath correlation function is C21(τ) =∑

qq′ uquq′e
−iνqτ 〈aqa†q′〉, where the vacuum expectation

is 〈aqa†q′〉 = δqq′ . Thus, C21(τ) =
∑

q u
2
qe
−iνqτ , which

in the continuum limit becomes

C21(τ) =

∫ ∞
0

dνJpt(ν)e−iντ . (49)

Here, we have defined the photon spectral density

Jpt(ν) =
∑
q

u2
qδ(ν − νq) = Dpt(ν)u(ν)2, (50)

which, in analogy with the phonon spectral density,
is a measure of the exciton–photon coupling strength
weighted by the electromagnetic density of states Dpt(ν).
Substituting into Eq. (45) then gives

dρS(t)

dt
= −i[εX |X〉〈X|, ρS(t)]

−
∫ ∞

0

dτ

∫ ∞
0

dνJpt(ν)
(
ei(εX−ν)τ [σ+, σ−ρS(t)]

+ e−i(εX−ν)τ [ρS(t)σ+, σ−]
)
. (51)

To evaluate the integrals we use the relation∫ ∞
0

dτe±iντ = πδ(ν)± iP 1

ν
, (52)

where P stands for the Principal Value, and thus obtain
the standard form for the optical master equation [63, 92]

dρS(t)

dt
= −i[ε′Xσ+σ−, ρS(t)]

+ γ(εX) (σ−ρS(t)σ+ − (1/2){σ+σ−, ρS(t)}) ,
(53)

with QD spontaneous emission rate

γ(εX) = 2πJpt(εX), (54)

and (Lamb) shifted excitation energy ε′X = εX +
P
∫∞

0
dνJpt(ν)/(εX − ν).

III. QD DYNAMICS - WEAK-COUPLING

With the necessary theoretical background established,
we now begin our investigation of the optically driven QD
dynamics within what we term weak (phonon) coupling
theory [68–71]. This treatment is based on the Marko-
vian master equation technique introduced in Section II,
taking the exciton-phonon interaction term of Eq. (15)
as a perturbation. We shall see that as long as: (i)
the exciton-phonon coupling strength does not become
too large; (ii) the temperature is low, in a sense that
we shall clarify below; and (iii) the driving does not in-
duce dynamics so fast that they are unresolved within
the Markov approximation, then weak-coupling theory
is sufficient to describe the QD dynamics for typically
relevant experimental parameters. In fact, the theory
has been successfully applied to infer and interpret the
influence of phonons in experimental QD exciton Rabi
rotation data, for example see Refs. [27, 28].

For clarity, it is worth restating the Hamiltonian for
the complete QD exciton-phonon system. We consider a
QD driven by a classical laser field with Rabi frequency
Ω, coupled to phonons via the deformation potential. As
such, our system Hamiltonian is given by Eq. (5), our
environment Hamiltonian by Eq. (6), and the interaction
Hamiltonian by Eq. (15). The combined Hamiltonian in
the rotating frame is thus

H = HS +HI +HE, (55)

where the various contributions are

HS = δ |X〉〈X|+ Ω

2
(|0〉〈X|+ |X〉〈0|), (56)

HI = |X〉〈X|
∑
k

gk(b†k + bk), (57)

HE =
∑
k

ωkb
†
kbk, (58)

with definitions as given in Section II.

A. Pure-dephasing approximation

Before deriving the full weak-coupling master equa-
tion, it is first instructive to consider a simple phe-
nomenological pure-dephasing model for the phonon in-
fluence, which is sometimes employed. This model is mo-
tivated by the form of HI in Eq. (57). The interaction
between the system and environment takes place through
the diagonal QD operator |X〉〈X|. As such, we may ex-
pect that for particular classes of Hamiltonians, system
operators which commute with this term will have pre-
served expectation values, while non-commuting opera-
tors will have decaying expectation values. Physically,
this means that QD populations are constants of mo-
tion, whereas the coherences dephase. We shall see in
Section IV that in the zero driving limit (Ω → 0) this
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can rigorously be shown to be the case, though it is not
true for finite Ω, and hence we expect the pure-dephasing
approximation to break down for driven QD systems.

Nevertheless, based on the above intuition and for com-
parison, we shall introduce the pure-dephasing approxi-
mation to the QD dynamics. The equation of motion
for the QD density operator in the Schrödinger picture
is written

dρS(t)

dt
= −i[HS , ρS(t)]+

1

2
γPD

(
σzρS(t)σz−ρS(t)

)
, (59)

where σz = |X〉〈X| − |0〉〈0|. As we shall see, the pure-
dephasing rate γPD determines how quickly off-diagonal
elements of ρS(t) decay. In the crudest approximation
γPD can be taken to be some constant whose value is
fixed by experimental observations. To go beyond this
purely phenomenological treatment, the most important
features of phonon-induced dephasing (at finite driving
Ω) can be captured by the form [26, 97]

γPD = παkBTΩ2, (60)

which will be justified in Section III B below. Here, α is a
measure of the exciton–phonon coupling strength defined
through the phonon spectral density, Jph(ω), introduced
in Eq. (17), and T is the QD sample temperature.

In order to solve Eq. (59), it is helpful to introduce the
Bloch vector, defined as α(t) = (〈σx〉, 〈σy〉, 〈σz〉) with
〈σi〉 = αi = TrS[σiρS(t)] for i = {x, y, z}, and from
which all expectation values pertaining to the QD degrees
of freedom can be calculated. For a Markovian master
equation, the Bloch vector obeys a differential equation
of the form

α̇(t) = M ·α(t) + b. (61)

From Eq. (59) we find that in the pure-dephasing approx-
imation

MPD =

 −γPD −δ 0
δ −γPD −Ω
0 Ω 0

 , (62)

and bPD = (0, 0, 0). Since the inhomogeneous term in
Eq. (61) is zero, the pure-dephasing steady-state solution
is the null vector, α(∞) = −M−1

PD · bPD = (0, 0, 0), which
corresponds to a maximally mixed state ρS(∞) = 1

211,
rather than a thermal equilibrium state at temperature
T . For a QD prepared initially in its ground state we have
α(0) = (0, 0,−1), and solving Eq. (61) under resonant
driving conditions, δ = 0, we find αx(t) = 0, while

αy(t) = e−γPDt/2
2Ω

ξ
sin
(
ξt/2

)
, (63)

αz(t) = −e−γPDt/2
[

cos
(ξPDt

2

)
+
γPD

ξPD
sin
(ξPDt

2

)]
,

(64)

where ξPD =
√

4Ω2 − γ2
PD. These solutions demonstrate

that within the pure-dephasing approximation the QD
performs damped Rabi oscillations, which in principle
become over-damped when γPD > 2Ω, and relaxes in the
long time limit to a maximally mixed state.

B. Weak-coupling master equation

Moving on from the phenomenological pure-dephasing
approximation, we now derive equations of motion in a
more rigorous manner from the microscopic Hamiltonian
of Eq. (55). Given the general master equation form of
Eq. (46) found in Section II, we simply insert the ap-
propriate quantities from Eqs. (56)-(58). The central ap-
proximation made here is that the master equation we
derive is valid to second order in the exciton-phonon in-
teraction Hamiltonian of Eq. (57).

As outlined, Eq. (46) is obtained assuming an interac-
tion Hamiltonian of the form

∑
iAi ⊗ Bi with both Ai

and Bi Hermitian. Inspection of Eq. (57) reveals that in
the present case we have only a single term in our sum,
and we can therefore assign Az = |X〉〈X| = 1

2 (11 + σz)

and Bz =
∑

k gk(b†k + bk). The response of the environ-
ment is characterised by a single bath correlation func-
tion Czz(τ) = TrE[B̃z(τ)B̃z(0)ρE]. Within the interac-
tion picture

B̃z(τ) =
∑
k

gk(b†keiωkτ + bke−iωkτ ), (65)

and assuming a thermal state for the initial environmen-
tal density operator, ρE(0) = e−βHE/TrE[e−βHE ] with
inverse temperature β = 1/kBT , we obtain the weak-
coupling correlation function [27, 28]

Czz(τ) =

∫ ∞
0

dωJph(ω)(cos(ωτ) coth(βω/2)−i sin(ωτ)),

(66)
where we have used results given in the Appendix . The
system operator Fourier components are found to be

Az(0) =
1

2
11 +

δΩ

2η2
w

σx +
δ2

2η2
w

σz, (67)

Az(ηw) =− δΩ

4η2
w

σx +
iΩ

4ηw
σy +

Ω2

4η2
w

σz, (68)

where ηw =
√
δ2 + Ω2 is the generalised Rabi fre-

quency, Az(−ηw) = A†z(ηw), and it can be verified that∑
ζ Az(ζ) = |X〉〈X|. Putting these expressions into

Eq. (46) we find that the Bloch vector again obeys an
equation of motion of the general form given in Eq. (61),
this time with

MW =

 −Ω2

η2w
Γw1 −δ′ − δΩη2w Γw1

δ′ −Ω2

η2w
Γw1 −Ω′

0 Ω 0

 , (69)

and bW =
(
− Ω

ηw
κw1,

δΩ
η2w

[λw2 − ζw1], 0
)
. Here we have

defined the quantities

Γw1 = 1
4

(
γzz(ηw) + γzz(−ηw)

)
, (70)

κw1 = 1
4

(
γzz(ηw)− γzz(−ηw)

)
, (71)

λw1 = 1
2

(
Szz(ηw)− Szz(−ηw)

)
, (72)

ζw1 = 1
2

(
Szz(ηw) + Szz(−ηw)

)
, (73)

λw2 =Szz(0), (74)
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in terms of the weak-coupling response function, with

Ω′ = Ω +
Ω

ηw
λw1, (75)

and the detuning now given by

δ′ = δ + λw2. (76)

The subscripts on the various quantities remind us that
they belong to the weak-coupling theory, which will be-
come important when we explore the more sophisticated
variational theory in Section V. Note that we have used
γzz(0) = 0 in arriving at the coefficient forms given in
Eq. (69), which is valid only in the Markov approxima-
tion.

The rates γzz(ζ) and energy shifts Szz(ζ) are defined
in accordance with Eqs. (47) and (66). In the Marko-
vian limit of the weak-coupling theory, it is possible with
the help of Eq. (52) to obtain certain analytic expres-
sions. Taking the one-sided Fourier transform of the
weak-coupling correlation function we find

γzz(ω) = 2π

∫ ∞
0

dω′Jph(ω′)×

(δ(ω + ω′)N(ω′) + δ(ω − ω′)[N(ω′) + 1]) ,
(77)

and

Szz(ω) = P

∫ ∞
0

dω′Jph(ω′)

(
N(ω′)
ω + ω′

+
N(ω′) + 1

ω − ω′
)
,

(78)

where N(ω) = (eβω − 1)−1 is the thermal occupation
number. With these expressions we find the weak-
coupling rate can be written

Γw1 =
π

2
Jph(ηw) coth(βηw/2), (79)

while

λw1 =P

∫ ∞
0

dωJph(ω)
ηw coth(βω/2)

η2
w − ω2

, (80)

ζw1 =P

∫ ∞
0

dωJph(ω)
ω

η2
w − ω2

, (81)

and

λw2 = −
∫ ∞

0

dω
Jph(ω)

ω
, (82)

the last of which we shall refer to as the polaron shift, as
it is responsible for an environmentally induced redefini-
tion of the QD resonance conditions, see Eq. (76). This
will also be an important quantity when we consider the
polaron and variational theories in subsequent sections,
where its origins will become clearer.

With the weak-coupling Bloch equations having been
found, we can now assess the validity of the pure-
dephasing approximation introduced in Section III A.

For driving at the phonon-shifted resonance, δ =∫∞
0

dωJph(ω)/ω (i.e. δ′ = 0), we can solve the Bloch
equations for the QD population difference αz assuming
the dot to be initialised in its ground state, αz(0) = −1.
This gives

αz(t) = q − (q + 1)e−γwt/2
[

cos
(ξwt

2

)
+
γw

ξw
sin
(ξwt

2

)]
,

(83)

where the population damping rate is γw = (Ω/ηw)2Γw1,
the generalised Rabi frequency becomes ξw =√

4ΩΩ′ − γ2
w, and we have defined the quantity q =

(δΩ/η2
w)[λw2 − ζw1]/Ω′. For most parameters of inter-

est it can be shown numerically that q � 1, and we
therefore neglect it in the discussion that follows. Now,
from Eq. (79), we see that if δ � ηw � kBT, ωc, the rate
appearing in the weak-coupling solution can be approxi-
mated as

γw ≈ παkBTΩ2, (84)

which is precisely the pure-dephasing rate introduced in
Eq. (60). Furthermore, if we replace the driving strength
in the pure-dephasing approximation with the phonon
renormalised version, i.e. we let Ω2 → ΩΩ′, then as far
as the QD populations are concerned, the pure-dephasing
approximation becomes equivalent to the weak-coupling
theory.

Important differences, however, are present in the dy-
namics of the QD coherences, particularly in the expecta-
tion value αx. While in the pure-dephasing case we have
simply α̇x = −γPDαx, from Eq. (69) the corresponding
equation of motion in the weak-coupling theory is con-
siderably more complicated. Notably, in regimes where
Ω� δ, we have α̇x ≈ −γwαx − κw1 with

κw1 =
π

2
Jph(Ω), (85)

leading to the steady-state solution αx(∞) =
−κw1/γPD = − tanh(βΩ/2), which is the expected
expression in thermal equilibrium and can be significant
for low temperatures and/or large driving strengths.
This observation demonstrates a serious deficiency of
the pure-dephasing approximation, which instead gives
αx(∞) = 0, and thus essentially corresponds to a high
temperature limit. For driven systems it does not, there-
fore, predict the correct behaviour of the QD coherences
outside the semiclassical regime [98]. More generally, it
can be said that the pure-dephasing approximation does
not obey detailed balance conditions, and therefore does
not lead to the correct (thermal) steady-state. If we are
only interested in the QD populations, this discrepancy
may be unimportant, since on resonance at least, the
pure-dephasing approximation does indeed predict the
correct qualitative behaviour for αz. Even in this case,
however, it is somewhat phenomenological, and the
dependence of the dephasing rate (and any environment
induced frequency shifts) on the system parameters must
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FIG. 1. QD excited state population (left) and coherence
(right) as a function of time, calculated within the pure-
dephasing approximation (solid, orange curves), and with
the weak-coupling theory (dashed, red curves). We see that
while the QD populations are closely matching, the coher-
ences differers considerably. Parameters used: Ω = 0.5 ps−1,
T = 30 K, α = 0.027 ps2 and ωc = 2.2 ps−1, and we drive
the QD at the polaron-shifted resonance, δ =

∫∞
0

dωJph(ω)/ω

(we have used Ω →
√

ΩΩ′ and δ = 0 in the pure-dephasing
theory, see main text).

be incorporated by hand. Moreover, as we shall see in
Section VI, the fact that phonons lead to behaviour for
the coherence αx which differs from the pure-dephasing
approximation can be vitally important when the QD
emission characteristics are considered.

To illustrate these points, in Fig. 1 we show the excited
state population and coherence of a driven QD calculated
within the pure-dephasing approximation (solid, orange
curves) and with the weak-coupling theory (dashed, red
curves). As discussed above, in order to achieve the
best possible comparison, in the weak-coupling theory
we have set Ω = 0.5 ps−1 and δ = −λw2 = −Szz(0) =∫∞

0
dωJph(ω)/ω, though in the pure-dephasing approx-

imation we use δ = 0 and Ω →
√

Ω(Ω + λw1). Once
these replacements have been made we see, as expected,
that both theories predict the same behaviour for the
QD population, with the damping rate and oscillation
period matching well. However, for these experimentally
relevant parameters [27, 28], the pure-dephasing approxi-
mation does not predict the correct evolution for the QD
coherence, either in the transient regime or the steady-
state.

Let us now examine the weak-coupling theory itself in
more detail. In addition to time domain dynamics, we
may also consider the QD excited state population as a
function of pulse area Θ = Ω∆τ , which we calculate by
evolving the QD density operator for a fixed duration
∆τ and increasing the Rabi frequency Ω. In the left pan-
els of Fig. 2 we show the QD population as a function
of pulse area for fixed ∆τ = 14 ps at the two differ-
ent temperatures indicated. The right panels display the
corresponding time domain dynamics for a representative
pulse area of Θ = π (corresponding to a pulse strength
of Ω = π/14 ps−1). As before, we drive the QD at its
polaron shifted transition frequency, and use material pa-
rameters relevant to the experiments in Refs. [27, 28].

For the plots corresponding to T = 4 K we see that
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FIG. 2. QD excited state population as a function of
pulse area (left) and time (right), calculated using the weak-
coupling theory. The theory predicts increased damping with
larger pulse area (equivalently, stronger driving). At elevated
temperatures the theory becomes unphysical, as can be seen
by the prediction of negative populations for T = 75 K. Other
parameters are α = 0.027 ps2 and ωc = 2.2 ps−1.

the weak-coupling theory predicts increased damping
with larger pulse area Θ (equivalently Rabi frequency
Ω = Θ/∆τ). This can be understood from Eqs. (79) and
(83) where the damping rate in the weak-coupling theory
is found to be proportional to the spectral density evalu-
ated at ηw =

√
Ω2 + δ2, and provided δ � Ω� kBT, ωc,

we have simply γw1 ≈ απkBTΩ2. We therefore ex-
pect the damping rate to increase linearly with both
temperature and the square of the Rabi frequency in
this regime, which has also been confirmed experimen-
tally [27, 28, 33, 40]. At elevated temperatures we find
that the weak-coupling theory begins to break down, and
when T = 75 K and Θ ∼ π it predicts an unphysical nega-
tive excited state population. As was shown in Ref. [73],
this failure arises due to an misestimation of the Rabi
frequency renormalisation captured through Ω′, and ulti-
mately indicates that the weak system-environment cou-
pling assumption no longer holds. More specifically, be-
ing perturbative in the exciton-phonon interaction term,
the weak-coupling theory captures only single-phonon
processes. At elevated temperatures (or larger α), multi-
phonon processes can play a significant role in the QD
dynamics, in which case we must look for alternative
methods to describe our open QD system.

IV. QD DYNAMICS - POLARON THEORY

Though the weak-coupling theory presented in Sec-
tion III works well in the limit of small exciton-phonon
coupling strengths and/or low temperatures, as we have
seen, outside these limits it becomes invalid and in cer-
tain parameter regimes can even predict unphysical be-
haviour. To go beyond weak-coupling it is necessary to
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formulate an alternative perturbative expansion, and in
this section we shall introduce one way of doing this,
namely polaron theory. The essence of this approach is
to apply a (physically motivated) unitary polaron trans-
formation to the complete Hamiltonian, [72, 99] and then
derive a master equation to second order in the interac-
tion terms in the transformed basis [73]. As we shall see,
the polaron basis is such that we are able to incorporate
much of the effect of the original system-environment in-
teraction into our free Hamiltonian, which we then treat
to all orders. Furthermore, we shall show that in con-
trast to the weak-coupling approach, the polaron master
equation remains valid for arbitrary coupling strength
and temperature (broadly speaking) provided that the
QD Rabi frequency is smaller than the phonon envi-
ronment cut-off [73]. This condition is often more eas-
ily fulfilled experimentally than those required for the
weak-coupling approximation to hold. For example, in
current relevant experiments, continuous-wave driving
strengths typically give rise to Rabi frequencies up to
around 200 µeV ≈ 20×2π GHz at most [33, 40], whereas
for QDs on the ∼ 10 nm scale phonon cut-off frequencies
are of the order of 1 meV [28, 69].

A. Independent boson model

To motivate the polaron approach and understand
its physical meaning, it is instructive to first consider
the zero driving limit of our complete Hamiltonian in
Eq. (55). In this case Ω → 0, δ → εX , and the Hamil-
tonian becomes what is known as the independent bo-
son model, which permits an exact solution [72, 99, 100].
Specifically, we have H → HIB where

HIB = εX |X〉〈X|+HI +HE, (86)

with HI = |X〉〈X|∑k gk(b†k + bk) and HE =
∑

k ωkb
†
kbk

as before. We now consider the action of the unitary
polaron transformation, defined as

HIB,P = eSHIBe−S , (87)

with S = |X〉〈X|∑k hk(b†k − bk) and hk = gk/ωk, such
that we can write

e±S = |0〉〈0|+ |X〉〈X|B±. (88)

Here, B± =
∏

kDk(±hk) are defined in terms of dis-

placement operators Dk(±hk) = exp[±(hkb
†
k − h∗kbk)]

whose properties we discuss in the Appendix . The trans-
formed Hamiltonian takes the uncoupled form [99]

HIB,P = ε′X |X〉〈X|+HE, (89)

where ε′X = εX −
∑

k g
2
k/ωk is the phonon-shifted

QD transition frequency. In the continuum limit,∑
k g

2
k/ωk →

∫∞
0

dωJph(ω)/ω, and we now see why we
termed λw2 in Eq. (82) the polaron shift; it is the dis-
placement energy associated with formation of a polaron

(charge-phonon) quasiparticle due to the exciton-phonon
interaction.

To calculate the dynamics of the reduced density oper-
ator describing the QD degrees of freedom we use Eq. (87)
to write the time evolution operator as

U(t) = e−iHIBt = e−Se−iHIB,PteS , (90)

or equivalently

U(t) = |0〉〈0|UE(t) + e−iε
′
Xt |X〉〈X|B−UE(t)B+, (91)

with UE(t) = e−iHEt. Thus ρS(t) = TrE

[
U(t)ρ(0)U†(t)

]
,

and assuming a factorising initial state ρ(0) =
ρS(0)ρE(0), we find

ρS(t) = ρ00 |0〉〈0|+ ρXX |X〉〈X|
+ ρ0X |0〉〈X| eiε

′
XtC∗−+(t)

+ ρX0 |X〉〈0| e−iε
′
XtC−+(t), (92)

where ρij = 〈i| ρS(0) |j〉 for i, j = {0, X}. Here we have
defined the environment correlation function using our
usual notation

C−+(t) = TrE

[
B̃−(t)B+ρE(0)

]
, (93)

with B̃±(t) = U†E(t)B±UE(t) =
∏

kDk(±hkeiωkt). From
the results given in the Appendix , we find that for an
initial thermal state of the phonon environment the cor-
relation function is C−+(t) = 〈B〉2eφ(t), where

φ(t) =

∫ ∞
0

dω
Jph(ω)

ω2

(
cosωt coth(βω/2)− i sinωt

)
,

(94)
is the phonon propagator and

〈B〉 = TrE[B±ρE(0)]

= exp

[
−1

2

∫ ∞
0

dω
Jph(ω)

ω2
coth(βω/2)

]
, (95)

which can be written 〈B〉 = e−
1
2φ(0). The factor 〈B〉

plays an important role in the polaron master equation
to be derived below, as it is responsible for a phonon-
induced renormalisation of the QD Rabi frequency.

Returning to Eq. (92), we can see immediately that
within the independent boson model the QD popula-
tions are stationary, while the coherences contained in
the off-diagonal elements evolve in some way, as expected
for a pure-dephasing process. If we consider a QD ini-
tialised in an equal superposition of its ground and ex-
cited state, we have ρij(0) = (1/2) for all i, j = {0, X}.
Calculating the subsequent evolution of the coherence
〈σx〉 = TrS[ρS(t)σx] we find

〈σx〉 = Re[C−+(t)], (96)

where we have moved into a frame rotating at the
phonon-shifted QD transition frequency ε′X . In Fig. 3
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FIG. 3. Left: Evolution of the QD coherence as a func-
tion of time calculated within the independent boson model
(zero driving limit). The curves are plotted for temperatures
T = 0, 25, 50, 75 K ordered as indicated. Right: Steady-
state values are given by 〈B〉2 which we plot as a function
of temperature. QD parameters used: α = 0.027 ps2 and
ωc = 2.2 ps−1.

we plot the dynamics of this coherence for increasing
temperature as indicated. In all cases we see an ini-
tial rapid decay on a picosecond timescale followed by
a plateau to a constant temperature dependent value,
limt→∞ C−+(t) = 〈B〉2, which we plot on the right.
Physically, we are seeing the effects of polaron forma-
tion [99]. As the phonon bath relaxes from its initial
thermal state to a displaced thermal state due to the
exciton-phonon interaction term, coherence is lost from
the QD excitonic degrees of freedom. However, once
the displaced equilibrium is reached (and the polaron
formed), no further loss of coherence is observed. Note
that though this process is a pure-dephasing one, it can-
not be modelled by a simple Markovian rate.

B. Master equation in the polaron frame

As we have just demonstrated, in the zero driving limit
our coupled QD-phonon Hamiltonian may be exactly di-
agonalised by a unitary polaron transformation. This
motivates us to suppose that outside the zero driving
limit, the polaron transformation should approximately
diagonalise our Hamiltonian, at least to the level of de-
scribing the process of bath relaxation and polaron for-
mation. The change of basis will then leave some residual
interaction term to which we can apply perturbation the-
ory.

To derive the QD master equation in the polaron
frame, we therefore return to the full Hamiltonian in
Eq. (55) and apply the same unitary transformation de-
fined by [73, 85, 99, 101]

HP = eSHe−S , (97)

where S = |X〉〈X|∑k hk(b†k − bk) with hk = gk/ωk, as
in Eq. (87). After the transformation we now find

HP = δ′ |X〉〈X|+ Ω

2

(
|0〉〈X|B−+|X〉〈0|B+

)
+HE, (98)

where δ′ = δ −∑k g
2
k/ωk is again the polaron shifted

detuning. As anticipated, although the original exciton-
phonon coupling term has been removed, the second term
in Eq. (98) represents a new interaction, involving exci-
tation and de-excitation of the QD along with the ap-
propriate environmental displacement captured through
B± =

∏
kDk(±hk). At this stage it may seem reasonable

to identify this term as the system-environment interac-
tion and attempt to derive a master equation taking it as
a perturbation. Note, however, that it has a non-zero ex-
pectation value with respect to an environmental thermal
state ρE, i.e. TrE[(|0〉〈X|B− + |X〉〈0|B+)ρE] = 〈B〉σx.
It is therefore more appropriate to define the system-
environment interaction with reference to this expecta-
tion, as we shall then be performing a perturbation ex-
pansion in fluctuations around the thermal average. To
do so we simply add 〈B〉σx to the part we define as the
system Hamiltonian while subtracting it from the inter-
action, leaving the total Hamiltonian unchanged. We
thus write

HP = HSP +HIP +HE, (99)

where

HSP = δ′ |X〉〈X|+ Ωp

2
σx, (100)

with Ωp = Ω〈B〉 the bath renormalised driving strength.
The interaction term becomes

HIP =
Ω

2

(
|0〉〈X| [B−−〈B〉]+ |X〉〈0| [B+−〈B〉]

)
, (101)

which we put in the more convenient form HIP =
(Ω/2)(σxBx + σyBy), with

Bx =
1

2

(
B+ +B− − 2〈B〉),

By =
1

2i

(
B− −B+). (102)

We note that no approximations have been made in ar-
riving at Eqs. (99)-(101) from Eq. (98). It is simply a
matter of redefining what are referred to as our system
and interaction Hamiltonians. Importantly though, we
now have an explicit renormalised driving term in the
system Hamiltonian, containing all orders of the origi-
nal system-environment interaction. This renormalisa-
tion results from polaron formation, with the classical
field now driving transitions not between the original QD
exciton states, but between states associated also with
the relevant phonon displacements.

We are now in a position to calculate the correla-
tion functions that enter the polaron frame master equa-
tion. The form of HIP tells us that we have two terms
in the summations in Eq. (46), i.e. i, j = {x, y} corre-
sponding to the system operators Ax = (Ω/2)σx and
Ay = (Ω/2)σy, and in principle four correlation functions

Cij(τ) = TrE[B̃i(τ)BjρE] corresponding to the bath op-
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erators in Eq. (102). Using results outlined in the Ap-
pendix we find

Cxx(τ) =
〈B〉2

2

(
eφ(τ) + e−φ(τ) − 2

)
, (103)

Cyy(τ) =
〈B〉2

2

(
eφ(τ) − e−φ(τ)

)
, (104)

with Cxy(τ) = Cyx(τ) = 0, and φ(τ) is again the phonon
propagator defined in Eq. (94). The final ingredients
needed to construct the explicit form of the polaron mas-
ter equation are the Fourier components of the system
operators Ax and Ay. These can be calculated straight-
forwardly from the general definition in Eq. (44), how-
ever, due to their somewhat cumbersome nature we do
not explicitly give them here. Instead, we simply note
that in analogy to the weak-coupling case, each system
operator has in general three Fourier components cor-
responding to the possible energy eigenvalue differences
of the system Hamiltonian, given in the present case by
Eq. (100).

Before we proceed it is important to note that hav-
ing transformed the total Hamiltonian into the polaron

representation, our density operator equations of mo-
tion are also defined within this frame. Referring to
our general master equation form in Eq. (46), the den-
sity operator appearing should now be thought of as the
reduced density operator in the polaron basis, defined
as ρSp = TrE[ρp] where ρp = eSρe−S , with ρ the to-
tal density operator in the original or ‘lab’ frame. As
such, when we take expectation values of the Pauli op-
erators to construct the Bloch vector, it too is in the
polaron frame, i.e. we have αp = (〈σx〉p, 〈σy〉p, 〈σz〉p)
with 〈σi〉p = TrS[ρSpσi]. To see how these quanti-
ties are related to those in the original frame we write
〈σi〉 = Tr[σiρ] = Tr[eSσie

−Sρp]. Making the Born ap-
proximation in the polaron frame, ρp = ρSpρE, we find
〈σz〉 = 〈σz〉p, whereas 〈σx〉 = 〈B〉〈σx〉p and 〈σy〉 =
〈B〉〈σy〉p. Thus, while the QD population dynamics cal-
culated in the polaron frame is the same as that in the
original frame, the coherences carry an extra factor of
〈B〉 within the Born approximation.

Working through the algebra, we therefore find that
the polaron frame Bloch vector obeys an equation of mo-
tion of the form α̇p = MP · αp + bP, with coefficients
given by

MP =


−Γp1 −

[
δ′ + δ′

ηp
λp1

]
0[

δ′ + δ′

ηp
λp2

]
−
[Ω2

p

η2p
Γp3 + δ′2

η2p
Γp2

]
−Ωp

δ′Ωp

η2p

[
Γp3 − Γp2

]
Ωp +

Ωp

ηp
λp1 −

[Ω2
p

η2p
Γp3 + δ′2

η2p
Γp2 + Γp1

]
 , (105)

where we have defined the quantities

Γp1 = Ω2

4

(
γyy(ηp) + γyy(−ηp)

)
, (106)

Γp2 = Ω2

4

(
γxx(ηp) + γxx(−ηp)

)
, (107)

Γp3 = Ω2

2 γxx(0), (108)

λp1 = Ω2

2

(
Syy(ηp)− Syy(−ηp)

)
, (109)

λp2 = Ω2

2

(
Sxx(ηp)− Sxx(−ηp)

)
, (110)

λp3 = Ω2Sxx(0), (111)

while bP =
(
− Ωp

ηp
κp1,− δ

′Ωp

η2p
[λp3− ζp1],− δ′

ηp
[κp1 + κp2]

)
,

with

κp1 = Ω2

4

(
γyy(ηp)− γyy(−ηp)

)
, (112)

κp2 = Ω2

4

(
γxx(ηp)− γxx(−ηp)

)
, (113)

ζp1 = Ω2

2

(
Sxx(ηp) + Sxx(−ηp)), (114)

and ηp =
√
δ′2 + Ω2

p.

As in Section III, we shall now illustrate the appli-
cation of the polaron approach by investigating the QD
excited state population both as a function of pulse area
Θ = Ω∆τ and within the time domain. In Fig. 4 we

plot dynamics calculated using the polaron theory (dot-
ted, blue curves), and the previous weak-coupling theory
(dashed, red curves) for comparison, where we drive the
QD at its polaron-shifted transition frequency. From the
first row, corresponding to a low temperature regime in
which T = 4 K, we see that both theories predict almost
identical dynamics over a wide range of pulse areas (or
equivalently driving strengths) [73]. To see why this is
the case, for δ′ = 0 the polaron Bloch equations can be
solved for the QD population difference giving

αz(t) = e−γpt/2
[

cos

(
ξwt

2

)
− Γp1

ξp
sin

(
ξpt

2

)]
, (115)

with damping rate γp = Γp1 + 2Γp3 and oscillation fre-

quency ξp =
√

4Ωp(Ωp + λp1)− Γ2
p1. Since we are inter-

ested in the low temperature limit in which the single-
phonon term should dominate, we now consider the po-
laron rate γp to lowest order in the system–environment
coupling strength α. At this order the polaron correla-
tion functions become Cxx(τ) ≈ 0 and Cyy ≈ 〈B〉2φ(τ),
which leads to Γp3 ≈ 0 and thus γp ≈ Γp1, which can be
found analytically:

γp ≈
π

2
Jph(Ωp) coth(βΩp/2). (116)
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FIG. 4. QD excited state population as a function of pulse
area (left) and time (right), calculated using the polaron
theory (dotted, blue curves) and the weak-coupling theory
(dashed, red curves). The first two rows correspond to a
pulse duration of ∆τ = 14 ps, while the last corresponds
to ∆τ = 10 ps. For T = 75 K the weak-coupling theory
breaks down though the polaron theory remains valid. At
very large pulse areas an undamped regime is reached, which
the polaron theory fails to capture (see bottom row).

Additionally, in the limit Ωp � kBT, ωc we may further
simplify the rate to γp ≈ παkBTΩ2

p. This demonstrates
that in the weak-coupling limit, the damping rate in the
polaron theory is the same as that in the weak-coupling
theory, though evaluated at the renormalised Rabi fre-
quency Ωp = Ω〈B〉 rather than the original Ω. Thus,
both theories predict similar dynamics at low tempera-
tures. The correspondence breaks down at higher tem-
peratures, however, as Rabi frequency renormalisation
(and multiphonon effects more generally) become signifi-
cant. For example, in the middle row of Fig. 4, for which
T = 75 K, we see that while the weak-coupling theory
predicts unphysical behaviour, the polaron master equa-
tion predictions remain physical.

Turning to the lower row, which corresponds to a tem-
perature of T = 50 K and for which we explore pulse ar-
eas as high as Θ = 20π, we see another way in which the
polaron and weak-coupling theories can differ. At small
pulse areas, although differences are present, the polaron
and weak-coupling theories predict similar qualitative be-
haviour. At larger pulse areas, however, the two theories
begin to differ drastically in their predictions. For exam-
ple, at Θ = 15π, corresponding to a driving strength of
Ω = 15π/(10 ps) ≈ 4.7 ps−1 shown on the right, we see
that the weak-coupling theory becomes undamped while
the polaron theory is still strongly damped. This in fact

demonstrates a failure of the polaron approach. For very
large driving strengths exceeding the cut-off frequency
of the phonon bath (here ωc = 2.2 ps−1), the phonon
modes cannot follow the state of the QD and the exciton
and phonons begin to decouple [102]. Though this effect
is yet to be experimentally observed, it has also been
predicted using powerful numerically exact path integral
methods [74, 78]. In this regime, owing to the decoupling
effect, the weak-coupling theory then begins to become
appropriate once again (as long as non-Markovian correc-
tions are minor). The polaron theory, however, cannot
capture this decoupling, since it assumes all modes can
adiabatically follow the QD state. As such, as the driv-
ing strength is increased, it simply gives rise to larger
and larger damping. We shall discuss these points fur-
ther in the following section, as well as develop a refined
version of the polaron master equation applicable also in
the strong driving regime.

V. QD DYNAMICS - VARIATIONAL POLARON
THEORY

In many parameter regimes the polaron master equa-
tion predicts dynamics more accurate than those of weak-
coupling theory. However, as we have just seen, for large
driving strengths the polaron approach becomes invalid.
This can be understood on a number of levels. For exam-
ple, in Section IV we saw how in the zero driving limit the
polaron transformation exactly diagonalises the complete
Hamiltonian. This inspired us to apply the transforma-
tion outside the zero driving limit, and to treat terms
proportional to the Rabi frequency as a perturbation.
In this case, it should come as little surprise that such
a theory relies on the driving strength being weak. To
give a more physical picture, the polaron transformation
can be thought of as moving into a basis in which the
environment oscillators are displaced in response to the
QD state. If we take this displaced basis as a repre-
sentation for our unperturbed Hamiltonian, then on an
intuitive level we might expect this to be valid only for
environment oscillators that are fast enough (i.e. of suf-
ficiently high frequency) to respond rapidly to the state
of the QD. For large driving strengths, it seems likely
that some (if not most) environment oscillators will be
too sluggish to follow the QD state. This reasoning moti-
vates us to explore a variational extension to the polaron
theory [74, 103–105], in which the displacement we ap-
ply to each environment oscillator is chosen by some cri-
terion that depends on the mode frequency, the driving
strength, and the other system-environment parameters.

A. Variational polaron transformation

To see how we determine the variational transforma-
tion, let us consider a generalisation of the polaron uni-
tary introduced in Section IV, acting on the full QD
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Hamiltonian in the rotating frame, Eq. (55). We have

HV = eVHe−V , (117)

where V = |X〉〈X|∑k fk(b†k − bk)/ωk, and the set {fk}
will be referred to as the variational parameters. With
reference to Eq. (97) we can see that for fk = gk this is
equivalent to the polaron transformation. The idea be-
hind the variational theory, however, is to chose the fk
in such a way that our perturbative master equation re-
mains as accurate as possible, given the restricted form of
transformation we consider. Applying the general trans-
formation in Eq. (117) we find [74]

HV = HSV +HIV +HE, (118)

where the system Hamiltonian is now given by

HSV = δv |X〉〈X|+
Ωv

2
σx, (119)

with δv = δ+R and R =
∑

k fk(fk−2gk)/ωk. In analogy
with the previous polaron theory, a renormalised Rabi
frequency is defined, given by Ωv = Ω〈B〉 with 〈B〉 =
TrE[B±ρE]. Now the bath operators are functions of the
variational parameters, B± =

∏
kDk(±fk/ωk), yielding

the renormalisation factor

〈B〉 = exp

[
−1

2

∑
k

f2
k

ω2
k

coth(βωk/2)

]
, (120)

for a thermal state of the environment. The interaction
Hamiltonian contains two terms, one polaron-like contri-
bution and one weak-coupling-like contribution. Specifi-
cally,

HIV =
Ω

2

(
σxBx + σyBy

)
+ |X〉〈X| Bz, (121)

where

Bx =
1

2

(
B+ + B− − 2〈B〉),

By =
1

2i

(
B− − B+), (122)

and

Bz =
∑
k

(gk − fk)(b†k + bk). (123)

Note that in general the bath operators in the variational
theory, which we label Bx, By and Bz, are not equal to
those encountered in the weak-coupling or polaron theo-
ries due to additional factors or terms involving the vari-
ational parameters. In the following we use calligraphic
notation for bath operators and correlation functions in
the variational frame.

B. Free energy minimisation

Before we go on to derive our variational master equa-
tion, we must first determine the free parameters {fk}.
We choose them such that they minimise the free energy
associated with the variationally transformed Hamilto-
nian HV. At zero temperature this corresponds to min-
imising the ground-state energy, as usual. At finite tem-
perature, as the free energy is minimised in equilibrium,
the variational transformation then attempts to find the
best possible diagonalisation of the complete Hamilto-
nian, given the restricted form of unitary [74, 103–105].

To minimise the free energy, we compute the Feynman-
Bogoliubov upper bound given by

AB = − 1

β
ln(Tr{e−βH0V}) + 〈HIV〉H0V

+O〈H2
IV〉H0V

,

(124)
where H0V = HSV + HE. The upper bound satisfies
AB ≥ A, with A being the true free energy. We have
constructed HIV such that the second term in Eq. (124)
is zero. Neglecting terms higher order in HIV we find the
approximate free energy bound

AB ≈
1

2
(δv + ηv)− 1

β
ln
(
1 + eβηv

)
, (125)

where ηv =
√
δ2
v + Ω2

v, and we have neglected the contri-
bution coming from the environment Hamiltonian, since
it does not depend on the variational parameters. Differ-
entiating Eq. (125) with respect to fk we find

∂AB
∂fk

=
1

2

∂R

∂fk
− 1

2
tanh(βηv/2)

∂ηv

∂fk
, (126)

and solving the minimisation condition ∂AB

∂fk
= 0 we ob-

tain

fk =
gk
[
1− δv

ηv
tanh(βηv/2)

][
1− δv

ηv
tanh(βηv/2)

][
1− Ω2

v

2δvωk
coth(βωk/2)

] .
(127)

We emphasise that the variational parameters differ for
each wavevector k. In particular, for those wavevectors k
having corresponding frequencies satisfying Ωv/ωk � 1,
the minimisation condition approximates to fk → gk.
Thus, for these modes, the full polaron transformation
should be applied. In contrast, for Ωv/ωk � 1 we find
fk → 0, and no transformation is applied. This confirms
our earlier intuition that for sluggish modes, for which
Ωv/ωk � 1, the polaron transformation is not appro-
priate, since these modes cannot follow the state of the
QD.

It is worth noting that the parameters δv, ηv and Ωv

appearing in Eq. (127) depend on the variational param-
eters {fk} themselves. As such, the renormalised quan-
tities must typically be solved for self-consistently. In
order to do so, we write fk = gkF (ωk) from which we
can write δv = δ +R with

R =

∫ ∞
0

dω
Jph(ω)F (ω)

ω
[F (ω)− 2], (128)
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and Ωv = 〈B〉Ω with

〈B〉 = exp

[
−1

2

∫ ∞
0

dω
Jph(ω)F (ω)2

ω2
coth(βω/2)

]
,

(129)
which we numerically solve simultaneously.

C. Variational master equation

To derive a master equation in the variational frame,
we must first find the relevant correlation functions.
From the interaction Hamiltonian, Eq. (121), we see that
within the variational representation there are two dis-
tinct contributions, one which resembles that in polaron
theory, and another whose form is the same as in the
weak-coupling approach. Accordingly, we expect the
resulting master equation to have three contributions;
terms which look similar to those found at weak-coupling,
polaron-like terms, and cross terms arising from products
of the two different types of bath operator. Indeed, this
reflects the general nature of the variational method. In
the appropriate limits it is expected to reduce to either
the weak-coupling or the polaron theories, though in gen-
eral both contributions will be present. The cross contri-
butions are important when interpolating between these
two cases.

We label the variational frame interaction Hamiltonian
system operators as Ax = (Ω/2)σx, Ay = (Ω/2)σy and
Az = |X〉〈X|. We must calculate the correlation func-

tions Cij(τ) = TrE[B̃i(τ)BjρE] for i, j = {x, y, z}, with
bath operators given in Eqs. (122) and (123). The cor-
relation functions Cxx(τ) and Cyy(τ) are of precisely the
same form as those encountered in polaron theory. In

exact analogy with Eqs. (103) and (104) we find

Cxx(τ) =
〈B〉2

2

(
eϕ(τ) + e−ϕ(τ) − 2

)
, (130)

Cyy(τ) =
〈B〉2

2

(
eϕ(τ) − e−ϕ(τ)

)
, (131)

and Cxy(τ) = Cyx(τ) = 0, where the phonon propagator
is now given by

ϕ(τ) =

∫ ∞
0

dω
Jph(ω)

ω2
F (ω)2

(
cosωτ coth(βω/2)−i sinωτ

)
,

(132)
and is thus dependent on the variational optimisation
through F (ω). Similarly, the weak-coupling-like correla-
tion function is found to be

Czz(τ) =

∫ ∞
0

dωJph(ω)[1−F (ω)]2

×
(

cosωτ coth(βω/2)− i sinωτ
)
. (133)

The only correlation functions requiring additional effort
arise from the cross terms. With the help of the Ap-
pendix we find

Cyz(τ) = −〈B〉
∫ ∞

0

dω
Jph(ω)

ω
F (ω)[1− F (ω)]

×
(
i cosωτ + sinωτ coth(βω/2)

)
, (134)

while Czy(τ) = −Cyz(τ) and Czx(τ) = Cxz(τ) = 0.
Having found the relevant bath correlation functions

we can now use Eq. (46) to write down the master equa-
tion in the variational frame. As in Section IV, we must
once again take care to remember that the Bloch equa-
tions we derive from variational master equation contain
expectation values in the variational frame, which for the
coherences are related to those in the original frame by
a factor of 〈B〉. We derive Bloch equations of the form
α̇V = MV ·αV + bV, with

MV = −


Ω2

v

η2v
Γw1+

δ2v
η2v

Γw2+Γp1+ Ωv

ηv
Γv1 δv+λw2+ δv

ηv
λp1− δvΩv

η2v
(λv1−λv2) δvΩv

η2v
(Γw1−Γw1)+ δv

2ηv
Γv1+Γv2

−δv−λw2− δv
ηv
λp2

Ω2
v

η2v
(Γw1+Γp3)+

δ2v
η2v

(Γw2+Γp2)− Ωv

2ηv
Γv1 Ωv+ Ωv

ηv
λw1−λv1

− δvΩv

ηv
(Γp3−Γp2)−Γv2 −Ωv− Ωv

ηv
λp1+

Ω2
v

η2v
λv1+

δ2v
η2v
λv2 Γp1+

δ2v
η2v

Γp2+
Ω2

v

η2v
Γp3+ Ωv

2ηv Γv2

 ,

(135)

being significantly more complicated than in either the
weak-coupling or polaron cases. Here, the quantities Γw1

etc. with a ‘w’ subscript are defined as in the weak-
coupling theory of Section III, but with the true weak-
coupling correlation function replaced by its variational
theory counterpart. Explicitly, these terms are defined as
in Eqs. (70) to (73), though with the correlation function

replaced by Eq. (133). Similarly, the quantities with a ‘p’
subscript are defined in Eqs. (106) to (114), though cal-
culated using the correlation functions in Eqs. (130) and
(131). The remaining terms are unique to the variational
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theory, and are given by

Γv1 = Ω(Szy(ηv)− Szy(−ηv)), (136)

Γv2 = ΩSzy(0), (137)

λv1 = Ω
4 (γzy(ηv) + γzy(−ηv)), (138)

λv2 = Ω
2 γzy(0). (139)

The inhomogeneous terms are

bV =

−
Ωv

ηv

[
κw1 + κp1

]
− Ω2

v+η2v
2η2v

κv1 − δ2v
η2v

Γv2

−Ωvδv
η2v

[
ζw1 − ζp1 − λw2 + λp3

]
+ δv

2ηv
ζv

− δv
ηv

[
κp1 + κp2

]
− δvΩv

2η2v

[
κv1 − 2Γv2

]
 , (140)

with coefficients containing a ‘w’ or ‘p’ subscript defined
as above, i.e. the corresponding weak-coupling or polaron
expression with the bath correlation function replaced by
the appropriate variational form, with

κv1 = Ω(Szy(ηv) + Szy(−ηv)), (141)

ζv1 = Ω
2 (γzy(ηv)− γzy(−ηv)). (142)

In the limit that F (ω) → 1 all terms with a ‘w’ or ‘v’
subscript disappear, and the Bloch equations reduce to
the polaron form as expected. In the opposite limit,
F (ω) → 0 all ‘p’ and ‘v’ terms vanish and we recover
the weak-coupling Bloch equations.

In Fig. 5 we compare the dynamics calculated using
the variational Bloch equations (solid, grey curves), with
those of the polaron (dotted, blue curves) and weak-
coupling (dashed, red curves) techniques. As in the pre-
vious cases, we plot the QD population as a function
of pulse area on the left, and in the time domain on
the right. At low temperatures and pulse areas of up to
at least Θ = 12π (corresponding to driving strengths of
Ω = Θ/∆τ ≈ 2.7 ps−1), it can be seen that all three the-
ories predict equivalent dynamics. For these parameters
the variational transformation is approximately equal to
the full polaron transformation, which as we have seen
gives behaviour close to the weak-coupling theory for
low enough temperatures. In the middle row, where
T = 75 K, we again find that the variational and polaron
theories match, but here the weak-coupling Bloch equa-
tions deviate markedly, predicting unphysical behaviour
as previously outlined. The variational transformation
in this high temperature regime thus corresponds closely
to the full polaron transformation (except for very low
frequency modes), since such a choice acts to minimise
the perturbative terms in the Hamiltonian. These terms
are, however, now large (and hence non-perturbative) if
no transformation is applied, which is the case in the
weak-coupling theory.

The real versatility of the variational approach can be
appreciated when considering the lowest row in Fig. 5,
where Rabi frequencies of up to Ω = 20π/(10 ps) ≈
6.3 ps−1 are explored at T = 50 K. In contrast to the
incorrect predictions of the polaron approach, at very
strong driving the variational theory is able to capture
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FIG. 5. QD excited state population as a function of pulse
area (left) and time (right), calculated using the variational
theory (solid, grey curves), polaron theory (dotted, blue
curves) and the weak-coupling theory (dashed, red curves).
For low temperature all three theories predict similar be-
haviour, while for T = 75 K and moderate driving strengths
the variational theory mimics the polaron theory in order to
minimise perturbative terms in the transformed Hamiltonian.
For very large driving strengths the variational and weak-
coupling theories approximately coincide as the exciton and
phonons decouple.

the exciton-phonon decoupling effect seen also in the
weak-coupling dynamics. In this regime, the full polaron
transformation becomes inappropriate as it relies on dis-
placing the phonons such that they adiabatically follow
the QD state. However, for strong driving, the majority
of important phonon modes become sluggish with respect
to the QD Rabi frequency and they should therefore be
displaced only by a small amount, or even not at all.
The variational transformation then naturally begins to
shift towards the identity (i.e. no transformation), and
instead we end up performing perturbation in the origi-
nal system-environment coupling strength. Thus, we see
that by attempting to minimise the interaction terms,
the variational formalism is able to interpolate between
regimes in which the polaron representation is advanta-
geous, and those in which a weak-coupling approach is
more favourable.

VI. PHONON EFFECTS IN QUANTUM DOT
PHOTON EMISSION

Our considerations so far have focussed on the influ-
ence of phonon interactions on the QD exciton popula-
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tion and coherence dynamics. Direct access to the ex-
citonic population can be gained, for example, through
photocurrent measurements [25, 27]. Furthermore, QD
populations and coherences can conveniently be calcu-
lated directly from the master equations that we have
derived. However, it is often preferable to probe QD
systems via measurements on their emitted photons, the
characterisation of which is also vitally important in the
development of new QD photonic technologies. Such
measurements also provide access to information beyond
simply elements of the QD reduced density matrix, such
as multi-time correlation functions and emission spectra.
More generally, it is an interesting and important prob-
lem to understand how standard quantum optics tech-
niques and intuition must be modified to account for the
solid-state nature of emitters such as semiconductor QDs.
Hence, the focus of this section will be on developing a
means to characterise the phonon influence in QD photon
emission properties.

A. Including both spontaneous emission and
phonon interactions

We have treated interactions between the QD excitonic
degrees of freedom and the phonon and photon environ-
ments separately up to now. However, we must account
for both phonon coupling and photon emission simulta-
neously if we are to characterise the effect of the former
on the latter. Let us start from the Hamiltonian in the
rotating frame

H = HS +HE1 +HE2 +HI1 +HI2 , (143)

where

HS = δ |X〉 〈X|+ Ω

2
(|0〉 〈X|+ |X〉 〈0|), (144)

again describes a classically driven QD within the RWA
[see Eq. (5)],

HE1
=
∑
k

ωkb
†
kbk, (145)

HE2
=
∑
q

νqa
†
qaq, (146)

are the free phonon and photon Hamiltonians, respec-
tively, and

HI1 = |X〉〈X|
∑
k

gk(b†k + bk), (147)

HI2 =
∑
q

uq(e−iωlt|0〉〈X|a†q + eiωlt|X〉〈0|aq), (148)

define the QD exciton-phonon and exciton-photon cou-
plings, respectively.

We shall restrict ourselves to the variational treatment
of the phonon interaction term, as it is the most gen-
eral and both the weak-coupling and polaron methods

can also be recovered from it in the appropriate limits.
Applying the unitary transformation as in Section V to
Eq. (143) we obtain

HV = HSV +HE1
+HE2

+HIV1
+HIV2

. (149)

Here, HSV is as given in Eq. (119), HIV1 is the exciton-
phonon interaction term in the transformed representa-
tion given in Eq. (121), and

HIV2
=
∑
q

uq(e−iωltB−|0〉〈X|a†q + eiωltB+|X〉〈0|aq),

(150)

now contains QD, phonon, and photon operators and de-
scribes how the exciton-photon coupling becomes mod-
ified after the variational transformation. Note that if
we assume the full environmental state to be initially
thermal then it is also separable, ρE(0) = ρE1

(0)ρE2
(0),

with ρE1
(0) and ρE2

(0) describing phonon and photon
bath thermal states, respectively. Hence, 〈B〉 can be
defined exactly as in Eq. (129) and TrE[HIV1

ρE(0)] =
TrE[HIV2

ρE(0)] = 0.
We now move into the interaction picture with respect

to H0V = HSV +HE1
+HE2

such that

H̃IV(t) = H̃IV1
(t) + H̃IV2

(t) (151)

where H̃IVj
(t) = eiH0VtHIVj

e−iH0Vt for j = {1, 2}. From
Eq. (39) we know that our second-order master equation
may be written as

d

dt
ρ̃SV(t) = −

∫ t

0

dt1TrE[H̃IV(t), [H̃IV(t1), ρ̃SV(t)ρE(0)]].

(152)

Inserting H̃IV(t) = H̃IV1
(t) + H̃IV2

(t) we find that the
master equation consists of four terms corresponding to
the different possible combinations of the two interaction
terms. However, as TrE[HIV1

ρE(0)] = TrE[HIV2
ρE(0)] =

0, those terms containing both H̃IV1
(t) and H̃IV2

(t) dis-
appear. Thus, we obtain

ρ̇SV(t) =− i[HSV, ρSV(t)]

−
∫ t

0

dτTrE1
[HIV1

, [H̃IV1
(−τ), ρSV(t)ρE1

(0)]]

−
∫ t

0

dτTrE[HIV2
, [H̃IV2

(−τ), ρSV(t)ρE(0)]],

(153)

where we have transformed back to the Schrödinger pic-
ture. Here, the first two terms are precisely those that
we obtained in the previous variational master equation
when considering only phonon interactions, and are thus
unaffected by the extra coupling to the radiation field.
The third term, responsible for photon emission and ab-
sorption processes due to the radiation field, appears at
first sight to be modified by the phonon environment.
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However, we shall now see that for typical QD parame-
ters this term should actually reduce to the usual form
expected in the absence of phonon interactions.

From Eq. (153), consider the last term on the right
hand side,

−
∫ t

0

dτTrE1+E2
[HIV2

, [H̃IV2
(−τ), ρSV(t)ρE1

(0)ρE2
(0)]],

(154)

where we have

H̃IV2(t) =
∑
q

uq

(
e−iωltB−(t)σ−(t)a†qe

iνqt

+ eiωltB+(t)σ+(t)aqe
−iνqt

)
=

2∑
i=1

Ãi(t)⊗ B̃i(t)⊗ C̃i(t), (155)

with Ã1(t) = σ−(t)e−iωlt, Ã2(t) = Ã†1(t), B̃1(t) = B−(t),

B̃2(t) = B̃1
†
(t), C̃1(t) =

∑
q uqa

†
qe
iνqt, and C̃2(t) =

C̃1
†
(t). We have also defined σ−(t) = eiH0Vtσ−e−iH0Vt,

with σ− = |0〉〈X|, and B−(t) = eiH0VtB−e−iH0Vt.
Though this interaction Hamiltonian is more complicated
than the form previously considered in Eq. (41), the prod-
uct initial state of the environment means that we may
still write Eq. (154) in the standard form

−
∑
ij

∫ t

0

dτ
(
C ′ij(τ)[Ai, Ãj(−τ)ρSV(t)]

+ C ′ji(−τ)[ρSV(t)Ãj(−τ), Ai]
)
, (156)

where the correlation functions are now defined as

C ′ij(τ) = TrE1
[B̃i(τ)BjρE1

(0)]TrE2
[C̃i(τ)CjρE2

(0)].

(157)

If we consider the initial photon field state to be the
multimode vacuum, which is an excellent approximation
under standard experimental conditions, then (as in Sec-
tion II E) the only non-zero correlation function is

C ′21(τ) = TrE1 [B̃2(τ)B1ρE1(0)]TrE2 [C̃2(τ)C1ρE2(0)]

= C+−(τ)

∫ ∞
0

dνJpt(ν)e−iντ , (158)

where C+−(τ) = TrE1
[B+(τ)B−ρE1

(0)], we have taken
the continuum limit of the photon field, and defined the
photon environment spectral density Jpt(ν), see Eqs. (49)
and (50). For the free field case in which we are inter-
ested, we may approximate this spectral density to be flat
around frequencies of interest and hence replace it sim-
ply by a constant Jpt(ν) ≈ κ (corresponding to a Markov
approximation in the time domain). Additionally, we ex-
tend the lower limit of integration to −∞ under the as-
sumption that only frequencies close to the QD resonance

are important. Hence,

C ′21(τ) ≈ C+−(τ)κ

∫ ∞
−∞

dνe−iντ

= 2πκ C+−(τ)δ(τ). (159)

Inserting this correlation function into Eq. (156) and per-
forming the integration over τ we obtain the standard
form of dissipator for spontaneous emission

γ′ (σ−ρSV(t)σ+ − (1/2){σ+σ−, ρSV(t)}) , (160)

with rate

γ′ = 2πκ C+−(0). (161)

However, since C+−(0) = 1 (see the Appendix ), we find
that the emission rate is unaltered from that in the ab-
sence of the phonon environment, γ′ → γ = 2πκ.

Thus, for a QD exciton coupled to both the phonon
environment and the free vacuum electromagnetic field,
we may separate the two processes in our second-order
master equation, considering each to be independent of
the other. This is valid regardless of whether we treat
the phonons within the weak-coupling, polaron, or vari-
ational representations.

B. The output field

We are now in a position to explore the QD dynamics
in the presence of both phonon and photon environments.
However, in order to use the master equation formalism
to probe the optical properties of the system, we still
need to relate the field emitted by the QD to its internal
degrees of freedom. Consider the electric field operator
at the origin

E(t) =
∑
q

εq

√
ωq

2ε0V

[
aq(t) + a†q(t)

]
, (162)

which we write as E(t) = E+(t) + E−(t). Here,

E+(t) =
∑
q

E0
qεqaq(t), (163)

E−(t) = E†+(t), and we have defined the field amplitude
E0

q. We would like to relate the field operators to the QD
internal degrees of freedom that are tracked in our master
equations. To do so, consider the Heisenberg equations
of motion for the field operators generated from the full
Hamiltonian given in Eq. (143),

d

dt
aq(t) = −iνqaq(t)− iuqe−iωltσ−(t), (164)

which we may formally integrate to give

aq(t) = e−iνqtaq(0)− i
∫ t

0

dt′uqe
−iωlt

′
σ−(t′)eiνq(t′−t).

(165)
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We then find the positive frequency component of the
emitted field to be

E+(t) =
∑
q

E0
qεqe

−iνqtaq(0)

− i
∑
q

E0
qεq

∫ t

0

dt′uqe
−iωlt

′
σ−(t′)eiνq(t′−t).

(166)

Here, the first term is the free evolution of the field that
would be obtained in the absence of the QD, which re-
mains in the vacuum state. It does not, therefore, con-
tribute to the field correlation functions in which we shall
be interested and can thus be ignored from now on. As
in the previous section, we take the continuum limit, as-
sume that the coupling is approximately constant around
the frequencies of interest, and extend the lower limit of
integration over frequency to −∞, such that

E+(t) ≈ −iE0
√
κ

∫ t

0

dt′
∫ ∞
−∞

dνe−iωlt
′
σ−(t′)eiν(t′−t)

= −2iπE0
√
κ

∫ t

0

dt′e−iωlt
′
σ−(t′)δ(t− t′)

= −iπE0
√
κe−iωltσ−(t). (167)

Note that we are now neglecting the mode polarisation
vectors, which give rise to geometric factors in the field
correlation functions in which we shall be interested, but
do not change their qualitative behaviour [92, 93]. As
a final remark, it is worth stressing that we have estab-
lished a relationship between the emitted field and the
QD internal dynamics based on the original Hamiltonian
of Eq. (143). Working in the variational picture by start-
ing from Eq. (149), the resulting expressions would also
contain factors of the phonon displacements B±(t). This
can in turn impact upon the short time behaviour of the
field correlation functions, though we shall not consider
such complications in the following.

C. Emission spectra

By relating the optical field emitted from the QD to
its internal dynamical evolution, we may now use our
master equation techniques to study how phonon inter-
actions impact upon the QD optical emission character-
istics. As an example, we shall consider the QD emission
spectrum under resonant driving conditions (resonance
fluorescence), and explore how this departs from well-
known results obtained in the atomic case, for which the
phonon environment is absent.

From the (optical) Wiener-Khinchin theorem we may
write the QD emission intensity spectrum as [93]

I(ω) =
1

2π

∫ ∞
−∞

dτ〈E−(t)E+(t+ τ)〉eiωτ

∝ 1

2π

∫ ∞
−∞

dτ〈σ+(t)σ−(t+ τ)〉ei(ω−ωl)τ , (168)

where we haved used Eq. (167) in the second line. Tak-
ing the long time limit, t → ∞, we define the spectral
component as the Fourier transform of the QD first order
correlation function, g(1)(τ), such that

S(ω) =
1

2π

∫ ∞
−∞

dτg(1)(τ)ei(ω−ωl)τ , (169)

where

g(1)(τ) = limt→∞〈σ+(t)σ−(t+ τ)〉
= limt→∞Tr[σ+(t)σ−(t+ τ)ρ(0)]

= limt→∞Tr[σ+σ−(τ)ρ(t)]

= 〈σ+σ−(τ)〉ss. (170)

We may calculate QD two-time correlation functions such
as g(1)(τ) using the quantum regression theorem, which
tells us how to find them directly from the master equa-
tion [92, 93]. To see this, consider a correlation function
of the form

〈S1(t)S2(t+ τ)〉 = Tr[S1(t)S2(t+ τ)ρ(0)]

= TrS[S2Λ(t, τ)], (171)

where we have used the cyclic invariance of the trace and
defined an effective reduced density operator

Λ(t, τ) = TrE{e−iHτρ(t)S1e
iHτ}, (172)

with H the system-environment Hamiltonian under con-
sideration. Differentiating Eq. (172) with respect to τ ,
we find that we can derive a second-order master equa-
tion for Λ(t, τ) that has precisely the same form as the
respective master equation for the reduced density op-
erator ρS(t), provided that we assume the Born-Markov
approximations hold such that ρ(t) ≈ ρS(t)ρE(0); i.e. the
environment remains in its initial (usually equilibrium)
state [106, 107]. Note that this does not necessarily im-
pose a weak-coupling limitation if we are working in ei-
ther the polaron or variational formalism. Thus, the
same equations of motion that we use to propagate the
reduced density operator may also be applied to find two-
time correlation functions, now subject to the initial con-
dition Λ(t, 0) = ρS(t)S1. Similar arguments can also be
used to find higher-order correlation functions.

Returning to the particular case of QD emission, the
correlation function is then given by

g(1)(τ) = TrS[σ−Λ(τ)] = 〈X|Λ(τ)|0〉 = ΛX0(τ), (173)

where Λ(τ) satisfies the master equation under con-
sideration for initial condition Λ(0) = ρS(∞)σ+, with
ρS(∞) = limt→∞[ρS(t)] being the long-time (steady-
state) system density operator. Notice that TrS[Λ(0)] =
TrS[σ+ρS(∞)] = 〈σ+〉ss, such that the effective reduced
density operator is unnormalised. Hence, for large delay
times τ the correlation function factorises as we might
expect,

limτ→∞[g(1)(τ)] = 〈σ+〉ss〈σ−〉ss = |ρ0X(∞)|2, (174)
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FIG. 6. Top and bottom left: Dynamical evolution of the QD
first-order field correlation function, calculated from the vari-
ational master equation, for driving strengths Ω = 0.001 ps−1

(top left), Ω = 0.05 ps−1 (top right), and Ω = 3.0 ps−1

(bottom left). Bottom right: Fraction of coherent emis-
sion as a function of driving strength. Notice the depar-
ture from textbook quantum optics with the reemergence
of coherent scattering around Ω ∼ kBT , which occurs only
when phonon effects are treated rigorously [97]. Other pa-
rameters used: T = 4 K, α = 0.027 ps2, ωc = 2.2 ps−1,
T1 = 1/γ = 700 ps, and we drive the QD at the polaron-
shifted resonance, δ =

∫∞
0

dωJph(ω)/ω.

and is equal to the magnitude of the off-diagonals of the
steady-state QD reduced density matrix. A finite mag-
nitude steady-state QD coherence thus implies a finite
level of first-order coherent photon scattering.

We can make this explicit in the spectrum by writing
it as the sum of two terms,

S(ω) = Scoh(ω) + Sinc(ω), (175)

with

Scoh(ω) =
1

2π

∫ ∞
−∞

dτ〈σ+〉ss〈σ−〉ssei(ω−ωl)τ , (176)

Sinc(ω) =
1

2π

∫ ∞
−∞

dτ〈σ′+σ′−(τ)〉ssei(ω−ωl)τ . (177)

Here we have defined

σ′+(t) = σ+(t)− 〈σ+〉ss, (178)

σ′−(t) = σ−(t)− 〈σ−〉ss, (179)

which characterise fluctuations of the operators σ±(t)
around their steady-state values. The coherent contribu-
tion to the scattering thus gives rise to a δ-function peak
in the spectrum at the laser driving frequency, whereas
the incoherent contribution may be calculated via the
regression theorem as outlined above.

The relative contributions of the coherent and incoher-
ent components to the total scattered light may be found
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FIG. 7. Top left: QD emission spectra at T = 4 K for vary-
ing driving strength, increasing from Ω = 0.05 ps−1 to Ω =
0.3 ps−1 in steps of 0.025 ps−1 (lower to upper spectra). Top
right: QD emission spectra at Ω = 0.12 ps−1 for varying tem-
perature, increasing from T = 4 K to T = 40 K in steps of 4 K
(lower to upper spectra). The lower panels show the respec-
tive high-frequency sidebands plotted on top of each other to
illustrate sideband broadening with driving strength (left) and
temperature (right). Other parameters used: α = 0.027 ps2,
ωc = 2.2 ps−1, T1 = 1/γ = 700 ps, and we drive QD at the
polaron-shifted resonance, δ =

∫∞
0

dωJph(ω)/ω.

by integrating over frequency:

Pcoh ∝
∫ ∞
−∞

dωScoh(ω) = limτ→∞[g(1)(τ)], (180)

Pinc ∝
∫ ∞
−∞

dωSinc(ω) = g(1)(0)− limτ→∞[g(1)(τ)].

(181)

This allows us to define the fraction of coherent light as

Fcoh =
Pcoh

Pcoh + Pinc
=

limτ→∞[g(1)(τ)]

g(1)(0)
=
|ρ0X(∞)|2
ρXX(∞)

,

(182)

which is simply the ratio of the long and short time val-
ues of g(1)(τ) (both of which are real). In the absence of
phonon interactions, for example for an atom in a cav-
ity, the coherent fraction is a monotonically decreasing
function with increasing Rabi frequency Ω, and becomes
strongly suppressed for Ω >

√
2γ as the TLS becomes

saturated [93]. In the bottom right panel of Fig. 6, we
see that for a QD in the presence of a phonon environ-
ment, the coherent fraction also decreases as the driving
strength is increased from zero, with particularly strong
suppression above

√
2γ. However, in stark contrast to the

atomic case, once Ω ∼ kBT we surprisingly see a reemer-
gence of coherent scattering, with almost half the light
being coherently scattered at large driving strengths [97].
Why should this be the case? Returning to Eq. (182),
we see that the coherent fraction can be written as the
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ratio of the square of the absolute value of the QD coher-
ence to the QD excitonic population, both calculated in
the steady-state. Above saturation, the steady-state QD
population is essentially unchanging, whereas the phonon
bath attempts to thermalise the QD with respect to its
internal Hamiltonian, given by HSV of Eq. (119) in the
variational representation. Furthermore, the phonon in-
fluence increases with driving strength, provided that Ω
does not become much larger than the phonon cut-off fre-
quency. In fact, neglecting emission and assuming a ther-
mal state ρ(∞) ∼ e−βΩVσx/2/Tr[e−βΩvσx/2] under reso-
nant driving, we obtain

Fcoh =
|ρ0X(∞)|2
ρXX(∞)

∼ 1

2
tanh2

(
Ωv

kBT

)
, (183)

which reaches a maximum value of 1/2 for Ωv � kBT .
This is also apparent from the dynamical evolution of
g(1)(τ) shown in Fig. 6, which relaxes to a finite steady-
state value at both very weak and strong driving, but not
in-between.

Turning now to the incoherent spectrum, in Fig. 7
we illustrate its behaviour with both varying driving
strength and temperature. As can be seen, for sufficiently
strong driving, a triple peak structure is evident in the
incoherent spectrum, known as the Mollow triplet [108],
with sidebands positioned at ±Ωv around a central peak
at the laser driving frequency. The Mollow triplet can
be understood within the dressed state picture as aris-
ing from photon induced transitions between manifolds
of the QD laser dressed states, which are split by Ωv.
The sideband position increases linearly with Ω and each
also broadens due to the associated enhancement of the
phonon influence. This is shown explicitly in the lower
left panel, where the high-frequency sidebands from the
top left panel are plotted on top of each other to aid
comparison. Interestingly, in the presence of phonon in-
teractions, the incoherent spectrum also varies with tem-
perature at constant driving strength, as shown in the
right hand panels of Fig. 7. Here we see a reduction
in the sideband splitting as temperature increases, due
to a suppression of the renormalised driving strength Ωv,
which has also been observed experimentally [40]. Again,
for large enough temperature, significant sideband broad-
ening can also be seen due to the thermal enhancement
of phonon processes.

VII. SUMMARY

We have reviewed, in some detail, master equation ap-
proaches to modelling the effects of exciton-phonon inter-
actions in both the dynamics and emission spectra of op-
tically driven QDs. We can summarise our conclusions as
follows. A phenomenological pure-dephasing description
can be useful for quick insight into QD population dy-
namics, but it must be used with care. A pure-dephasing
approximation does not, for example, bring about the
correct thermal equilibrium QD steady-state to which the

phonon bath should naturally lead. This failure can be
reflected, for example, in incorrect predictions for the QD
coherence dynamics and emission spectra. More gener-
ally, we can say that processes induced by the phonon
environment are not solely of a pure-dephasing form, un-
less the external driving strength goes to zero. Even in
this case, a constant (Markovian) pure-dephasing rate is
unable to capture the QD coherence dynamics brought
about by phonon bath relaxation.

Moving to a more microscopic approach, we may treat
the exciton-phonon coupling term as a weak perturbation
provided that single phonon processes dominate. How-
ever, at elevated temperatures and/or for strong exciton-
phonon interactions such a weak-coupling treatment will
break down, and it may even predict non-physical dy-
namics for quite reasonable experimental parameters.
More specifically, perturbation in the exciton-phonon in-
teraction cannot properly describe multiphonon QD Rabi
frequency renormalisation effects due to the presence of
the phonon bath, nor the resulting changes to the QD
damping rates [73].

To go beyond weak-coupling, it is possible to formu-
late a master equation within the polaron representation,
which accounts for QD-state-dependent phonon displace-
ment (i.e polaron formation) at the Hamiltonian level.
The resulting theory properly captures QD Rabi fre-
quency renormalisation, and multiphonon processes more
generally, provided that the phonon modes can adiabat-
ically follow the QD state. This means that it is appli-
cable at weak to strong couplings and low to high tem-
peratures. However, if the external optical driving is so
strong that the phonon modes become sluggish (i.e. low
in frequency compared to the Rabi scale), they are unable
to track the state of the QD. The polaron basis is then no
longer appropriate and the theory fails. In particular, it
is generally unable to reproduce the expected decoupling
effect between the exciton and phonons at very strong
driving, which is a feature of both weak-coupling [69] and
numerically converged path-integral calculations [78].

The most versatile approach explored is also based on
applying a transformation of polaron form, but now with
phonon mode dependent displacements determined by a
variational procedure. This theory is flexible enough to
encompasses both the weak-coupling and polaron meth-
ods in the appropriate limits, and can also accurately
interpolate between them [74]. The variational optimi-
sation naturally chooses a representation that, as far as
possible given the specific form of transformation, min-
imises the perturbative terms within the Hamiltonian.
The resulting master equation thus remains valid over a
much larger regime of parameter space as compared to
less sophisticated techniques.

Finally, we mention that the techniques we have re-
viewed are not restricted to the study of QD exciton-
phonon interactions, but may be applied much more
widely to quantum systems coupled to bosonic environ-
ments [101, 109–113]. In particular, the polaron and
variational approaches have recently gained substantial
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interest in relation to excitonic energy transfer in molec-
ular dimers [114–119] and larger light-harvesting com-
plexes [120–123]. Here, the exciton-vibrational coupling
can naturally be quite strong and the spectral density
may take on a more complicated, structured form. In
fact, in such situations, system-environment correlations
and non-Markovian dynamics can become especially im-
portant [124–129], with the question of how to extend
master equation approaches to incorporate such effects
a key driver for a very active and important area of re-
search.

Appendix: Calculation of correlation functions using
coherent states

1. Coherent states

Let us begin by defining and reviewing some impor-
tant properties of coherent states, for which we follow
the seminal work of Glauber [130]. Coherent states con-
stitute an alternative to the Fock basis used to describe
states of Harmonic oscillators. Let us consider a single
harmonic oscillator mode described by creation and an-
nihilation operators b† and b satisfying [b, b†] = 1, with
frequency ω. A Fock state |n〉 is defined as an eigenstate
of the number operator b†b such that

b†b |n〉 = n |n〉 . (A.1)

If the oscillator is not coupled to any other system its
Hamiltonian is H = ωb†b and therefore |n〉 is a state
with definite energy nω. From these basic definitions it
can be shown that the Fock states also satisfy

b |n〉 =
√
n |n− 1〉 , b† |n〉 =

√
n+ 1 |n+ 1〉 , (A.2)

and that 〈n|m〉 = δnm.
Coherent states are defined as eigenstates of the anni-

hilation operator. We label a coherent state as |α〉, which
satisfies

b |α〉 = α |α〉 , (A.3)

where α is some complex number referred to as the am-
plitude of the coherent state. From this basic definition
it can be shown that a coherent state has a Fock state
representation

|α〉 = e−
1
2 |α|2

∑
n

αn√
n!
|n〉 , (A.4)

from which it follows that 〈0|α〉 = e−
1
2 |α|2 with |0〉 the

vacuum satisfying b |0〉 = 0. To generate the coherent
states, we consider the action of the displacement opera-
tor

D(α) = eαb
†−α∗b = e−

1
2 |α|2eαb

†
e−α

∗b, (A.5)

where the second equality follows from the identity
eA+B = e−

1
2 [A,B]eAeB , valid when [A,B] is proportional

to the identify. From this definition it can be seen that

D(α) |0〉 = |α〉 . (A.6)

The displacement operator is named as such since it
transforms b† and b according to

D(α)b†D†(α) = b† − α∗, (A.7)

D(α)bD†(α) = b− α. (A.8)

It is also useful to note that displacement operators can
be combined using the relation

D(α2)D(α1) = D(α2 + α1)e
1
2 (α2α

∗
1−α∗2α1). (A.9)

In order to appreciate the utility of the coherent state
representation we now consider how it can be used to cal-
culate expectation values. The key ingredient is to notice
that the identity can be expressed in terms of coherent
states as

1

π

∫
d2α|α〉〈α| = 11, (A.10)

where the integral takes place over the whole complex
plane, i.e.

∫
d2α =

∫∞
−∞ dRe[α]

∫∞
−∞ dIm[α]. With this

identification it can be shown that the trace of an oper-
ator can be written

Tr[A] =
1

π

∫
d2α〈α|A |α〉 . (A.11)

We can write a density operator as

ρ =

∫
d2αP (α)|α〉〈α|, (A.12)

where P (α) satisfies
∫

d2αP (α) = 1 and describes the
state. It follows that the expectation value of an operator
A with respect to the density operator described by P (α)
is given by

〈A〉 = Tr[Aρ] =

∫
d2αP (α)〈α|A |α〉 . (A.13)

We are typically interested in thermal state density
operators, for which it can be shown that P (α) =
(1/πN) exp(−|α|2/N) where N = (eβω − 1)−1 is the av-
erage number of excitations in an oscillator of frequency
ω at inverse temperature β = 1/kBT .

2. Correlation functions

We are now in a position to calculate the bath correla-
tion functions used in the derivation of our master equa-
tions in the main text. We begin with the weak-coupling
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correlation function encountered in Section III. Consid-
ering for now the single mode case, we are interested in
the expectation value

〈B̃z(τ)B̃z(0)〉 =
1

πN

∫
d2α e−|α|

2/N 〈α|B̃(τ)B̃(0) |α〉 ,
(A.14)

where B̃z(τ) = g(b†eiωτ + be−iωτ ). By writing |α〉 =
D(α) |0〉 and inserting 11 = D(α)D(−α) in-between the
two factors of Bz, we may use Eqs. (A.7) and (A.8) and
perform the necessary complex integrals to find

〈B̃z(τ)B̃z(0)〉 = g2
(

cosωτ coth(βω/2)− i sinωτ
)
.

(A.15)
As the modes are independent, generalising to the mul-
timode case results in a sum of terms of the form in
Eq. (A.15), and converting the sum to an integral with
use of the spectral density results in Eq. (66) in the main
text.

In the polaron theory we have correlation functions of
displacement operators. We first consider the expecta-
tion value of a single displacement operator, 〈B±〉, which
has the form

〈D(h)〉 =
1

πN

∫
d2α e−|α|

2/N 〈α|D(h) |α〉 , (A.16)

where we take h = ±(g/ω). Once again we use
D(α) |0〉 = |α〉, and with the aid of Eq. (A.9) we find
after integration

〈D(h)〉 = exp
[
− 1

2
|h|2 coth(βω/2)

]
. (A.17)

Generalising to the multimode case we obtain the polaron
theory renormalisation factor given in Eq. (95).

Now, in order to calculate correlation functions we
must consider the form 〈D(h)D(h′)〉 for some com-
plex numbers h and h′. For this we can simply
use Eq. (A.9) to write 〈D(h)D(h′)〉 = exp[ 1

2 (hh′∗ −
h∗h′)]〈D(h + h′)〉. Together with Eq. (A.17) it can
be seen that 〈D(±h)D(∓h)〉 = 〈D(∓h)D(±h)〉 while
〈D(±h)D(±h)〉 = 〈D(∓h)D(∓h)〉. Now, letting h =
(g/ω)eiωτ and h′ = (g/ω) the time dependent correla-
tion functions can readily be found to be

〈B̃±(τ)B̃∓(0)〉 = 〈B〉eφ(τ), (A.18)

〈B̃±(τ)B̃±(0)〉 = 〈B〉e−φ(τ), (A.19)

where in the single mode case the phonon propagator is

φ(τ) =
( g
ω

)2(
cosωτ coth(βω/2)− i sinωτ

)
. (A.20)

Recalling the definitions of the multimode bath operators
in the polaron theory from Eq. (102) we arrive at the
correlation functions given in Eqs. (103) and (104).

In the variational theory the interaction Hamiltonian
has two types of bath operator; one being essentially Bz
encountered in the weak-coupling theory, but with the
coupling constant g replaced with g − f , and the other
being the same as in polaron theory but with g replaced
by f [see Eqs. (122) and (123)]. As such, the master
equation involves three types of correlation function, one
involving two weak-coupling like operators, one involving
polaron theory-like operators, and a third type unique to
the variation theory involving cross terms. To evaluate
the cross terms we consider

〈B̃±(τ)B̃z(0)〉 =
1

πN

×
∫

d2α e−|α|
2/N 〈α|D(h)(g − f)(b† + b)|α〉,

(A.21)

where we have h = ±(f/ω)eiωτ for B̃±(τ), respectively.
Using the usual trick of writing |α〉 = D(α) |0〉, permut-
ing D(α) through (b† + b) with the use of Eqs. (A.7) and
(A.8), and combining the three displacement operators
we arrive at

〈B̃±(τ)B̃z(0)〉 = (g − f)〈D(h)〉(Nh− (N + 1)h∗).
(A.22)

Recalling Eq. (122) relating the variational operators Bx
and By to B± in the variational theory, we find

〈B̃y(τ)B̃z(0)〉 =− 〈B〉(g − f)
( f
ω

)
×
(
i cosωτ + sinωτ coth(βω/2)

)
,

(A.23)

while 〈B̃z(τ)B̃y(0)〉 = −〈B̃y(τ)B̃z(0)〉, and

〈B̃z(τ)B̃x(0)〉 = 〈B̃x(τ)B̃z(0)〉 = 0. The generalisa-
tion of Eq. (A.23) to the multimode case is given in
Eq. (134).
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