1,340 research outputs found

    Luminosity distance in Swiss cheese cosmology with randomized voids. II. Magnification probability distributions

    Full text link
    We study the fluctuations in luminosity distances due to gravitational lensing by large scale (> 35 Mpc) structures, specifically voids and sheets. We use a simplified "Swiss cheese" model consisting of a \Lambda -CDM Friedman-Robertson-Walker background in which a number of randomly distributed non-overlapping spherical regions are replaced by mass compensating comoving voids, each with a uniform density interior and a thin shell of matter on the surface. We compute the distribution of magnitude shifts using a variant of the method of Holz & Wald (1998), which includes the effect of lensing shear. The standard deviation of this distribution is ~ 0.027 magnitudes and the mean is ~ 0.003 magnitudes for voids of radius 35 Mpc, sources at redshift z_s=1.0, with the voids chosen so that 90% of the mass is on the shell today. The standard deviation varies from 0.005 to 0.06 magnitudes as we vary the void size, source redshift, and fraction of mass on the shells today. If the shell walls are given a finite thickness of ~ 1 Mpc, the standard deviation is reduced to ~ 0.013 magnitudes. This standard deviation due to voids is a factor ~ 3 smaller than that due to galaxy scale structures. We summarize our results in terms of a fitting formula that is accurate to ~ 20%, and also build a simplified analytic model that reproduces our results to within ~ 30%. Our model also allows us to explore the domain of validity of weak lensing theory for voids. We find that for 35 Mpc voids, corrections to the dispersion due to lens-lens coupling are of order ~ 4%, and corrections to due shear are ~ 3%. Finally, we estimate the bias due to source-lens clustering in our model to be negligible

    Double Peak Behavior of Resistivity-Temperature Curves in (Nd / Pr)0.67Sr0.33MnO3 Manganites

    Get PDF
    We have reported the synthesis of polycrystalline samples of R0.67Sr0.33MnO3 (R Pr, Nd) from the precursors of PrMnO3, NdMnO3 and SrMnO3 by using solid state reaction method. These samples were sintered at 1200 °C and 1400 °C. Some of samples were also undergone oxygen annealing at 950 °C for 6 h. All the synthesized samples were characterized by X-Ray diffraction (XRD) technique, scanning electron microscopy (SEM) and low temperature resistivity versus temperature (R-T) measurement. The XRD patterns show the monophasic nature of the sintered and annealed samples. The sintered samples of Nd0.67Sr0.33MnO3 has metal- insulator transition at 250 K, while the sample annealed in oxygen shows two peaks, one sharp peak at 250 K and other broad peak at 200 K. The sintered samples of Pr0.67Sr0.33MnO3 has only one peak at 290 K, while the sample annealed in oxygen shows two peaks, one sharp peak at 290 K and another broad peak at 225 K. The two peak behavior in the annealed samples has been explained by inhomogeneous diffusion of oxygen in the core of the grain and at the grain boundaries region When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3596

    Impact of Cycle Time on Potential CTS

    Full text link
    Upper limb musculoskeletal symptoms and upper-limb musculoskeletal disorders (MSDs) have been found to be common in the working population. Carpal tunnel syndrome (CTS) is the most commonly studied entrapment neuropathy caused by compression of the median nerve as it passes through the carpal tunnel beneath the flexor retinaculum. The present study is conducted among person engaged in connecting rod manufacturing industry to check effect of cycle time of operation on potential CTS symptoms. The study sample consists of 103 workers for data collection. The study was conducted by questionnaire, physical examination, wrist angle evaluation and on job observation. Correlation analysis and Correlation analysis using IBM SPSS 20, it is revealed that Value of Pearson correlation coefficient is found to be -0.930 which is same as the value calculated manually. So analysis by SPSS 20 also confirms that there is very high negative correlation between cycle time and percentage of CTS sufferers

    Efficient organic-inorganic hybrid perovskite solar cells processed in air

    Get PDF
    Organic-inorganic hybrid perovskite solar cells with fluorine doped tin oxide/titanium dioxide/CH3NH3PbI3-xClx/poly(3-hexylthiophene)/silver were made in air with more than 50% humidity. The best devices showed an open circuit voltage of 640 mV, a short circuit current density of 18.85 mA cm-2, a fill factor of 0.407 and a power conversion efficiency of 5.67%. The devices showed external quantum efficiency varying from 60 to 80% over a wavelength region of 350 nm to 750 nm of the solar spectrum. The morphology of the perovskite was investigated using scanning electron microscopy and it was found to be porous in nature. This study provides insights into air-stability of perovskite solar cells

    Coincident electron channeling and cathodoluminescence studies of threading dislocations in GaN

    Get PDF
    We combine two scanning electron microscopy techniques to investigate the influence of dislocations on the light emission from nitride semiconductors. Combining electron channeling contrast imaging and cathodoluminescence imaging enables both the structural and luminescence properties of a sample to be investigated without structural damage to the sample. The electron channeling contrast image is very sensitive to distortions of the crystal lattice, resulting in individual threading dislocations appearing as spots with black–white contrast. Dislocations giving rise to nonradiative recombination are observed as black spots in the cathodoluminescence image. Comparison of the images from exactly the same micron-scale region of a sample demonstrates a one-to-one correlation between the presence of single threading dislocations and resolved dark spots in the cathodoluminescence image. In addition, we have also obtained an atomic force microscopy image from the same region of the sample, which confirms that both pure edge dislocations and those with a screw component (i.e., screw and mixed dislocations) act as nonradiative recombination centers for the Si-doped c-plane GaN thin film investigated

    Diffractive triangulation of radiative point sources

    Get PDF
    We describe a general method to determine the location of a point source of waves relative to a twodimensional single-crystalline active pixel detector. Based on the inherent structural sensitivity of crystalline sensor materials, characteristic detector diffraction patterns can be used to triangulate the location of a wave emitter. The principle described here can be applied to various types of waves, provided that the detector elements are suitably structured. As a prototypical practical application of the general detection principle, a digital hybrid pixel detector is used to localize a source of electrons for Kikuchi diffraction pattern measurements in the scanning electron microscope. This approach provides a promising alternative method to calibrate Kikuchi patterns for accurate measurements of microstructural crystal orientations, strains, and phase distributions
    corecore