103 research outputs found

    Chemical, Structural, and Electronic Characterization of the 010 Surface of Single Crystalline Bismuth Vanadate

    Get PDF
    We have structurally, chemically and electronically characterized the most stable 010 surface of a Mo doped BiVO4 single crystal. Low energy electron diffraction LEED reveals that the surface is not significantly reconstructed from a bulk termination of the crystal. Synchrotron based X ray spectroscopies indicate no surface enhancement of any of the crystal constituents and that the Mo dopant occupies tetrahedral sites by substituting for V at the surface. Using resonant photoemission to study the valence band structure as the V L3 edge is scanned we observe an intra band gap state associated with reduced vanadium formed by the Mo doping. This state is likely associated with small polaron formation at the surface. This feature is enhanced at a photon energy that is not resonant with any of the main features in the absorption spectrum of the pristine BiVO4. This indicates that the additional electron from Mo doping likely induces further distortion of the VO4 tetrahedral units and generates a new conduction band state either by splitting of the V dz2 states or by hybridization of V dzx and V dz2 states. We measure a work function of 5.15 eV for the BiVO4 010 surface. Measurement of the work function allows us to recast the electronic energy levels onto the normal hydrogen electrode scale for comparison to the standard reduction and oxidation potentials of water. This detailed study should provide a basis for future work aimed at a molecular level understanding of BiVO4 electrolyte interfaces used for photoelectrochemical water splittin

    The nature of ferromagnetism in the chiral helimagnet Cr1/3NbS2Cr_{1/3}NbS_{2}

    Full text link
    The chiral helimagnet, Cr1/3NbS2Cr_{1/3}NbS_{2}, hosts exotic spin textures, whose influence on the magneto-transport properties, make this material an ideal candidate for future spintronic applications. To date, the interplay between macroscopic magnetic and transport degrees of freedom is believed to result from a reduction in carrier scattering following spin order. Here, we present electronic structure measurements through the helimagnetic transition temperature, TCT_{C} that challenges this view by showing a Fermi surface comprised of strongly hybridized Nb- and Cr- derived electronic states, and spectral weight in proximity to the Fermi level to anomalously increases as temperature is lowered below TCT_{C}. These findings are rationalized on the basis of first principle, density functional theory calculations, which reveal a large nearest-neighbor exchange energy, suggesting the interaction between local spin moments and hybridized Nb- and Cr- derived itinerant states to go beyond the perturbative interaction of Ruderman-Kittel-Kasuya-Yosida, suggesting instead a mechanism rooted in a Hund's exchange interaction

    Mechanical thrombectomy in patients with proximal occlusions and low NIHSS: Results from a large prospective registry

    Get PDF
    Background: Mechanical thrombectomy is now standard of care for treatment of acute ischemic stroke secondary to large vessel occlusion in the setting of high NIHSS. We analysed a large nationwide registry focusing on patients with large vessel occlusion and low NIHSS on admission to evaluate the efficacy and safety of thrombectomy in this patient population Methods: 2826 patients treated with mechanical thrombectomy were included in a multicentre registry from January 1, 2011 to December 31, 2015. We included patients with large vessel occlusion and NIHSS ≤ 6 on admission. Baseline characteristics, imaging, clinical outcome, procedure adverse events and positive and negative outcome predictors were analysed. Results: 134 patients were included. 90/134 had an anterior circulation and 44 a posterior circulation stroke. One patient died before treatment. Successful revascularization (mTICI 2b-3) was achieved in 73.7% (98/133) of the patients. Intraprocedural adverse event was observed in 3% (4/133) of cases. Symptomatic intracranial haemorrhage rate was 5.3% (7/133). At three months, 70.9% (95/134) of the patients had mRS score 0-2, 15.7% (21/134) mRS 3-5 and 13.4% (18/134) mRS 6. Age and successful recanalization were significant predictors of a good clinical outcome on both univariate (p= 0.005 and p=0.007) and multivariable (p=0.0018 and p=0.009 [nat log]) analysis. Absence of vessel recanalization and symptomatic intracranial hemorrhage were independent predictors of poor outcome (p=0.021). Conclusions: Our study suggests that patients with large vessel occlusion and low NIHSS score on admission can benefit from mechanical thrombectomy. Randomized trials are warranted

    Graphene Nanoreactors: Photoreduction of Prussian Blue in Aqueous Solution

    Get PDF
    Prussian dyes are characterized by interesting photomagnetic properties due to the photoinduced electron transfer involved in the Fe oxidation and spin state changes. Ferromagnetic Prussian blue (PB) in contact with titanium dioxide (TiO2) can be reduced to paramagnetic Prussian white (PW) upon UV band gap excitation of TiO2. This process is promoted by the presence of a hole scavenger, such as water, fundamental to ensure the overall charge balance and the continuity of the process. In order to clarify the photoinduced reduction mechanism and the role of water, an innovative system of graphene nanobubbles (GNBs) filled with a PB aqueous solution was developed, enabling the application of electron spectroscopies to the liquid phase, up to now limited by the vacuum required to overcome the short electron inelastic mean free path in dense medium. In this work GNBs formed on the photocatalytic substrate are able to act as "nanoreactors", and they can control and take part in the reaction. The evolution of Fe L2,3 edge X-ray absorption spectra measured in total electron yield through the graphene membrane revealed the electron reduction from PB (FeIII-CN-FeII) to PW (FeII-CN-FeII) upon UV irradiation, shedding light on the photoinduced electron transfer mechanism in liquid phase. The results, confirmed also by Raman spectroscopy, unequivocally demonstrate that the reaction occurs preferentially in aqueous solution, where water acts as hole scavenger. © 2017 American Chemical Society

    Efficient Electrochemical Water Splitting with PdSn4Dirac Nodal Arc Semimetal

    Get PDF
    Recently, several researchers have claimed the existence of superior catalytic activity associated with topological materials belonging to the class of Dirac/Weyl semimetals, owing to the high electron conductivity and charge carrier mobility in these topological materials. By means of X-ray photoelectron spectroscopy, electrocatalytic tests, and density functional theory, we have investigated the chemical reactivity (chemisorption of ambient gases), ambient stability, and catalytic properties of PdSn4, a topological semimetal showing Dirac node arcs. We find a Tafel slope of 83 mV in the hydrogen evolution reaction (HER) dec-1with an overpotential of 50 mV, with performances resembling those of pure Pd, regardless of its limited amount in the alloy, with a subsequent reduction in the cost of raw materials by ∼80%. Remarkably, the PdSn4-based electrode shows superior robustness to CO compared to pure Pd and Pt and high stability in water media, although the PdSn4surface is prone to oxidation with the formation of a sub-nanometric SnO2skin. Moreover, we also assessed the significance of the role of topological electronic states in the observed catalytic properties. Actually, the peculiar atomic structure of oxidized PdSn4enables the migration of hydrogen atoms through the Sn-O layer with a barrier comparable with the energy cost of the Heyrovsky step of HER over Pt(111) in acidic media (0.1 eV). On the other hand, the topological properties play a minor role, if existing, contrarily to the recent reports overestimating their contribution in catalytic properties. © 2021 The Authors. Published by American Chemical SocietyD.W.B. acknowledges the support from the Ministry of Science and Higher Education of the Russian Federation (through the basic part of the government mandate, project no. FEUZ-2020-0060 and Jiangsu Innovative and Entrepreneurial Talents Project). A.M., J.F., and F.V. acknowledge the Italian Ministry of University and Research MUR by the PRIN 2017 (no. 2017YH9MRK) and MISE FISR 2019 AMPERE (FISR2019_01294) projects for the financial support
    corecore