1,808 research outputs found

    Calibration of Commercial Eddy Current Instruments for Quantitative NDE

    Get PDF
    Eddy current testing is typically used in the field to detect defects in a specimen that exceed a set threshold. In most conventional techniques this is done by calibrating the test setup with a reference standard in a way that will correlate the output signal to a known and standard flaw size, such as 10% metal loss due to corrosion thinning in a aircraft skin. However, these standard methods cannot completely characterize a defect in a quantitative manner. In general, reliable quantitative NDE requires quantitative measurements and a theory to interpret them. Theoretical eddy current NDE usually models the test coil’s impedance change (in ohms) as the quantitative measure that varies with specimen and flaw parameters. Specific laboratory instruments such as impedance analyzers are capable of making quantitative measurements that allow researchers to compare experimental data directly to theory. But typical commercial eddy current instruments are not designed to measure probe impedances quantitatively. Rather, they measure relative changes in the coil impedance

    Imaging Radiation Pneumonitis in a Rat Model of a Radiological Terrorism Incident

    Get PDF
    We have developed a rat model of single, sub-lethal thoracic irradiation. Our irradiation protocol is considered representative of exposures near the detonation site of a dirty bomb or small nuclear device. The model is being used to investigate techniques for identifying, triaging and treating possible victims. In addition to physiological markers of right ventricular hypertrophy, pulmonary vascular resistance, and arterial distensibility, we present two methods for quantifying microvascular density. We used methods including microfocal X-ray imaging to investigate changes in lung structure/function resulting from radiation exposure. Radiation pneumonitis is a complication in subjects receiving thoracic irradiation. A radiographic hallmark of acute radiation pneumonitis is a diffuse infiltrate corresponding to the radiation treatment field. We describe two methods for quantifying small artery dropout that occurs in the model at the same time-period. Rats were examined 3-days, 2-weeks, 1-month (m), 2-m, 5-m, and 12-m post-irradiation and compared with aged-matched controls. Right ventricular hypertrophy and increases in pulmonary vascular resistance were present during the pneumonitis phase. Vascular injury was dependent on dose and post-irradiation duration. Rats irradiated with 5 Gy had few detectable changes, whereas 10 Gy resulted in a significant decrease in both microvascular density and arterial distensibility around 2- m, the decrease in each lessening, but extending through 12-m. In conclusion, rats irradiated with a 10 Gy dose had changes in vascular structure concurrent with the onset of radiation pneumonitis that were detectable with our imaging techniques and these structural changes persist after resolution of the pneumonitis

    Vascular Injury After Whole Thoracic X-Ray Irradiation in the Rat

    Get PDF
    Purpose To study vascular injury after whole thoracic irradiation with single sublethal doses of X-rays in the rat and to develop markers that might predict the severity of injury. Methods and Materials Rats that received 5- or 10-Gy thorax-only irradiation and age-matched controls were studied at 3 days, 2 weeks, and 1, 2, 5, and 12 months. Several pulmonary vascular parameters were evaluated, including hemodynamics, vessel density, total lung angiotensin-converting enzyme activity, and right ventricular hypertrophy. Results By 1 month, the rats in the 10-Gy group had pulmonary vascular dropout, right ventricular hypertrophy, increased pulmonary vascular resistance, increased dry lung weights, and decreases in total lung angiotensin-converting enzyme activity, as well as pulmonary artery distensibility. In contrast, irradiation with 5 Gy resulted in only a modest increase in right ventricular weight and a reduction in lung angiotensin-converting enzyme activity. Conclusion In a previous investigation using the same model, we observed that recovery from radiation-induced attenuation of pulmonary vascular reactivity occurred. In the present study, we report that deterioration results in several vascular parameters for ≤1 year after 10 Gy, suggesting sustained remodeling of the pulmonary vasculature. Our data support clinically relevant injuries that appear in a time- and dose-related manner after exposure to relatively low radiation doses

    Standard Flaws for Eddy Current Probe Characterization

    Get PDF
    Calibration procedures for eddy current inspections often involve the use of artifact standards containing manufactured flaws. The manufactured flaw is assumed to be a good approximation of the type of flaw being sought during the inspection. These manufactured flaws are most often produced by electrical discharge machining (EDM), milling, or the controlled growth of fatigue cracks. With simple amplitude display inspection equipment this type of artifact is usually sufficient, but as more sophisticated inspection equipment is developed some drawbacks to the commonly accepted practice are becoming evident. Instruments that are sensitive to eddy current signal phase as well as amplitude can show considerable differences in phase between a relatively wide EDM notch or milled slot and a real fatigue crack [1]. The use of controlled growth fatigue cracks can also cause problems when forces at the crack’s tip drive the crack faces together, making electrical contact [2], In addition, estimates of crack depth will always be estimates until the crack is broken apart. We describe here a technique for consistently producing well characterized discontinuities in aluminum which are not subject to these problems

    Excitation spectrum of a two-component Bose-Einstein condensate in a ring potential

    Full text link
    A mixture of two distinguishable Bose-Einstein condensates confined in a ring potential has numerous interesting properties under rotational and solitary-wave excitation. The lowest-energy states for a fixed angular momentum coincide with a family of solitary-wave solutions. In the limit of weak interactions, exact diagonalization of the many-body Hamiltonian is possible and permits evaluation of the complete excitation spectrum of the system.Comment: 4 pages, 1 figur

    Calibration and Characterization of Eddy Current Probes by Photoinductive Field Mapping

    Get PDF
    The calibration of eddy-current measurement systems is a long-standing problem in nondestructive evaluation. Eddy-current probe calibration is needed for several reasons: to compensate for different probe sensitivities, to set detection thresholds, to validate instrument setup and operation, and to perform quantitative flaw sizing.1,2 The most frequently used calibration method is to scan the probe being calibrated over simulated defects such as electrical-discharge-machined (EDM) slots, saw cuts, or laboratory-produced fatigue cracks. This method has the virtue of calibrating probe and instrument at the same time and it can be performed on the same material as that to be inspected. But it has a number of disadvantages as well. First, a large number of artifact standards must be generated, certified, and maintained, resulting in considerable expense. Second, the signals from EDM slots and saw cuts are not equivalent to the signals from actual defects.3 Third, it is questionable whether quantitative flaw sizing can be performed using such a calibration method. Even if laboratory-produced cracks were to be used for routine calibration (a prohibitively expensive option), the accuracy of calibration or quantitative sizing could be compromised by the occurrence of crack closure effects.

    Eddy-Current Measurements of Corrosion-Related Thinning in Aluminuium Lap Splices

    Get PDF
    The aging commercial aviation fleet requires new methods for detecting and characterizing corrosion. In particular, the need exists for a rapid and reliable method of nondestructively detecting and characterizing corrosion in layered aircraft skins. Aircraft skin consists of thin aluminum sheet. There are many joints at which these sheets are overlapped and attached to the airframe by fasteners that extend through the sheets and into the substructure. The overlapping aluminum sheets are generally separated by a thin gap, which may be filled with a sealant. Because of the overlapping nature of such joints, the second sheet and the substructure are not directly accessible from the surface

    A Self-Calibrating Eddy-Current Instrument

    Get PDF
    The calibration of eddy-current measurement systems is a long-standing problem in nondestructive evaluation. Calibration serves a number of purposes: for equipment setup and validation, for equalizing responses from different probes and instruments, for setting detection thresholds, and for quantitative flaw sizing. The most commonly used calibration method is to scan the probe to be calibrated over simulated defects such as electrical-discharge machined (EDM) slots, saw cuts, or laboratory-produced fatigue cracks. This method has the virtue of calibrating probe and instrument at the same time on the same material as that to be inspected. But it has a number of disadvantages as well. First, a large number of artifact standards must be generated, certified, and maintained in the typical inspection organization; this can result in considerable expense. Second, the signals from EDM slots and saw cuts are not equivalent to the signals from actual defects, as discussed in another paper in these proceedings [1]. Third, quantitative flaw sizing can only be accomplished over a limited range with such calibration methodology, and the accuracy of sizing flaws with this method is brought into question by the aforementioned inequality of slots and cracks. Even if laboratory-produced cracks were to be used routinely for calibration (a prohibitively expensive option), quantitative sizing could be compromised by the occurrence of crack closure effects [2]

    Anastrozole and everolimus in advanced gynecologic and breast malignancies: activity and molecular alterations in the PI3K/AKT/mTOR pathway.

    Get PDF
    BackgroundSince PI3K/AKT/mTOR pathway activation diminishes the effects of hormone therapy, combining aromatase inhibitors (anatrozole) with mTOR inhibitors (everolimus) was investigated.Patients and methodsWe evaluated anastrozole and everolimus in 55 patients with metastatic estrogen (ER) and/or progesterone receptor (PR)-positive breast and gynecologic tumors. Endpoints were safety, antitumor activity and molecular correlates.ResultsFull doses of anastrozole (1 mg PO daily) and everolimus (10 mg PO daily) were well tolerated. Twelve of 50 evaluable patients (24%) (median = 3 prior therapies) achieved stable disease (SD) ≥ 6 months/partial response (PR)/complete response (CR) (n = 5 (10%) with PR/CR): 9 of 32 (28%) with breast cancer (n=5 (16%) with PR/CR); 2 of 10 (20%), ovarian cancer; and 1 of 6 (17%), endometrial cancer. Six of 22 patients (27%) with molecular alterations in the PI3K/AKT/mTOR pathway achieved SD ≥ 6 months/PR/CR. Six of 8 patients (75%) with SD ≥ 6 months/PR/CR with molecular testing demonstrated at least one alteration in the PI3K/AKT/mTOR pathway: mutations in PIK3CA (n=3) and AKT1 (n=1) or PTEN loss (n=3). All three responders (CR (n = 1); PR (n=2)) who had next generation sequencing demonstrated additional alterations: amplifications in CCNE1, IRS2, MCL1, CCND1, FGFR1 and MYC and a rearrangement in PRKDC.ConclusionsCombination anastrozole and everolimus is well tolerated at full approved doses, and is active in heavily-pretreated patients with ER and/or PR-positive breast, ovarian and endometrial cancers. Responses were observed in patients with multiple molecular aberrations. CLINICAL TRAILS INCLUDED: NCT01197170

    PIK3CA mutations in advanced cancers: characteristics and outcomes.

    Get PDF
    PIK3CA mutations are frequently diagnosed in diverse cancers and may predict response to PI3K/AKT/mTOR inhibitors. It remains unclear whether they are associated with other characteristics. We analyzed characteristics and outcome of 90 consecutive patients with diverse advanced tumors and PIK3CA mutations and 180 wild-type PIK3CA controls matched by tumor type, gender, and age referred to the Clinical Center for Targeted Therapy. PIK3CA and MAPK mutations (KRAS, NRAS, and BRAF) were analyzed using polymerase chain reaction-based DNA sequencing. The most frequent PIK3CA mutations were E545K (31/90, 34%), E542K (16/90, 18%) in exon 9, and H1047R (20/90, 22%) in exon 20. PIK3CA mutations compared to wild-type PIK3CA were associated with simultaneous KRAS (p=0.047) and MAPK mutations (p=0.03), but only MAPK mutations were confirmed as having an independent association in multivariate analysis. Rates of lung, bone, liver and brain metastases were similar in PIK3CA-mutant and wild-type patients. Patients with PIK3CA mutations treated on trials with PI3K/AKT/mTOR inhibitors had a higher partial/complete response (PR/CR) rate than wild-type PIK3CA patients treated with their best phase I therapy (10/56, 18% vs. 12/152, 8%; p=0.045), but not a prolonged progression-free survival. Patients with H1047R PIK3CA mutations had higher PR/CR rate with PI3K/AKT/mTOR inhibitors compared to wild-type PIK3CA patients treated with their best phase I therapy (6/16, 38% vs. 12/152, 8%; p=0.003). In conclusion, PIK3CA mutations in diverse cancers were not associated with clinical characteristics, but were correlated with MAPK mutations. PIK3CA mutations, especially, H1047R, were associated with attaining a PR/CR to PI3K/AKT/mTOR pathway inhibitors
    • …
    corecore