77 research outputs found

    On the general theory of the origins of retroviruses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The order retroviridae comprises viruses based on ribonucleic acids (RNA). Some, such as HIV and HTLV, are human pathogens. Newly emerged human retroviruses have zoonotic origins. As far as has been established, both repeated infections (themselves possibly responsible for the evolution of viral mutations <b>(Vm) </b>and host adaptability <b>(Ha)</b>); along with interplay between <it>inhibitors </it>and <it>promoters </it>of cell tropism, are needed to effect retroviral cross-species transmissions. However, the exact <it>modus operadi </it>of intertwine between these factors at molecular level remains to be established. Knowledge of such intertwine could lead to a better understanding of retrovirology and possibly other infectious processes. This study was conducted to derive the mathematical equation of a general theory of the origins of retroviruses.</p> <p>Methods and results</p> <p>On the basis of an arbitrarily non-Euclidian geometrical "thought experiment" involving the cross-species transmission of simian foamy virus (sfv) from a non-primate species <it>Xy </it>to <it>Homo sapiens </it>(<it>Hs</it>), initially excluding all social factors, the following was derived. At the port of exit from <it>Xy </it>(where the species barrier, SB, is defined by the <it>Index of Origin</it>, IO), sfv shedding is (1) enhanced by two transmitting tensors <b>(Tt)</b>, (i) virus-specific immunity (VSI) and (ii) evolutionary defenses such as APOBEC, RNA interference pathways, and (when present) expedited therapeutics (denoted e<sup>2</sup>D); and (2) opposed by the five accepting scalars <b>(At)</b>: (a) genomic integration hot spots, gIHS, (b) nuclear envelope transit <b>(</b>NMt) vectors, (c) virus-specific cellular biochemistry, VSCB, (d) virus-specific cellular receptor repertoire, VSCR, and (e) pH-mediated cell membrane transit, (↓<sub>pH </sub>CMat). Assuming <b>As </b>and <b>Tt </b>to be independent variables, <b>IO = Tt/As</b>. The same forces acting in an opposing manner determine SB at the port of sfv entry (defined here by the <it>Index of Entry</it>, <b>IE = As/Tt</b>). Overall, If sfv encounters no unforeseen effects on transit between X<it>y </it>and <it>Hs</it>, then the square root of the combined index of sfv transmissibility (√<b>|RTI|) </b>is proportional to the product IO* IE (or ~Vm* Ha* ∑Tt*∑As*<b>Ω</b>), where <b>Ω </b>is the retrovirological constant and ∑ is a function of the ratio Tt/As or As/Tt for sfv transmission from <it>Xy </it>to <it>Hs</it>.</p> <p>Conclusions</p> <p>I present a mathematical formalism encapsulating the general theory of the origins of retroviruses. It summarizes the choreography for the intertwined interplay of factors influencing the probability of retroviral cross-species transmission: <b>Vm, Ha, Tt, As, </b>and <b>Ω</b>.</p

    Panmixia in a fragmented and unstable environment: the hydrothermal shrimp Rimicaris exoculata disperses extensively along the Mid-Atlantic ridge

    Get PDF
    Dispersal plays a fundamental role in the evolution and persistence of species, and especially for species inhabiting extreme, ephemeral and highly fragmented habitats as hydrothermal vents. The Mid-Atlantic Ridge endemic shrimp species Rimicaris exoculata was studied using microsatellite markers to infer connectivity along the 7100-Km range encompassing the sampled sites. Astonishingly, no genetic differentiation was found between individuals from the different geographic origins, supporting a scenario of widespread large-scale dispersal despite the habitat distance and fragmentation. We hypothesize that delayed metamorphosis associated to temperature differences or even active directed migration dependent on physical and/or chemical stimuli could explain these results and warrant further studies on adaptation and dispersal mechanisms

    Travelling in time with networks: revealing present day hybridization versus ancestral polymorphism between two species of brown algae, Fucus vesiculosus and F. spiralis

    Get PDF
    Background: Hybridization or divergence between sympatric sister species provides a natural laboratory to study speciation processes. The shared polymorphism in sister species may either be ancestral or derive from hybridization, and the accuracy of analytic methods used thus far to derive convincing evidence for the occurrence of present day hybridization is largely debated. Results: Here we propose the application of network analysis to test for the occurrence of present day hybridization between the two species of brown algae Fucus spiralis and F. vesiculosus. Individual-centered networks were analyzed on the basis of microsatellite genotypes from North Africa to the Pacific American coast, through the North Atlantic. Two genetic distances integrating different time steps were used, the Rozenfeld (RD; based on alleles divergence) and the Shared Allele (SAD; based on alleles identity) distances. A diagnostic level of genotype divergence and clustering of individuals from each species was obtained through RD while screening for exchanges through putative hybridization was facilitated using SAD. Intermediate individuals linking both clusters on the RD network were those sampled at the limits of the sympatric zone in Northwest Iberia. Conclusion: These results suggesting rare hybridization were confirmed by simulation of hybrids and F2 with directed backcrosses. Comparison with the Bayesian method STRUCTURE confirmed the usefulness of both approaches and emphasized the reliability of network analysis to unravel and study hybridization

    Prezygotic Barriers to Hybridization in Marine Broadcast Spawners: Reproductive Timing and Mating System Variation

    Get PDF
    Sympatric assemblages of congeners with incomplete reproductive barriers offer the opportunity to study the roles that ecological and non-ecological factors play in reproductive isolation. While interspecific asynchrony in gamete release and gametic incompatibility are known prezygotic barriers to hybridization, the role of mating system variation has been emphasized in plants. Reproductive isolation between the sibling brown algal species Fucus spiralis, Fucus guiryi (selfing hermaphrodite) and Fucus vesiculosus (dioecious) was studied because they form hybrids in parapatry in the rocky intertidal zone, maintain species integrity over a broad geographic range, and have contrasting mating systems. We compared reproductive synchrony (spawning overlap) between the three species at several temporal scales (yearly/seasonal, semilunar/tidal, and hourly during single tides). Interspecific patterns of egg release were coincident at seasonal (single peak in spring to early summer) to semilunar timescales. Synthesis of available data indicated that spawning is controlled by semidiurnal tidal and daily light-dark cues, and not directly by semilunar cycles. Importantly, interspecific shifts in timing detected at the hourly scale during single tides were consistent with a partial ecological prezygotic hybridization barrier. The species displayed patterns of gamete release consistent with a power law distribution, indicating a high degree of reproductive synchrony, while the hypothesis of weaker selective constraints for synchrony in selfing versus outcrossing species was supported by observed spawning in hermaphrodites over a broader range of tidal phase than in outcrossers. Synchronous gamete release is critical to the success of external fertilization, while high-energy intertidal environments may offer only limited windows of reproductive opportunity. Within these windows, however, subtle variations in reproductive timing have evolved with the potential to form ecological barriers to hybridization

    Diosgenin, a Steroidal Saponin, Inhibits Migration and Invasion of Human Prostate Cancer PC-3 Cells by Reducing Matrix Metalloproteinases Expression

    Get PDF
    BACKGROUND: Diosgenin, a steroidal saponin obtained from fenugreek (Trigonella foenum graecum), was found to exert anti-carcinogenic properties, such as inhibiting proliferation and inducing apoptosis in a variety of tumor cells. However, the effect of diosgenin on cancer metastasis remains unclear. The aim of the study is to examine the effect of diosgenin on migration and invasion in human prostate cancer PC-3 cells. METHODS AND PRINCIPAL FINDINGS: Diosgenin inhibited proliferation of PC-3 cells in a dose-dependent manner. When treated with non-toxic doses of diosgenin, cell migration and invasion were markedly suppressed by in vitro wound healing assay and Boyden chamber invasion assay, respectively. Furthermore, diosgenin reduced the activities of matrix metalloproteinase-2 (MMP-2) and MMP-9 by gelatin zymography assay. The mRNA level of MMP-2, -9, -7 and extracellular inducer of matrix metalloproteinase (EMMPRIN) were also suppressed while tissue inhibitor of metalloproteinase-2 (TIMP-2) was increased by diosgenin. In addition, diosgenin abolished the expression of vascular endothelial growth factor (VEGF) in PC-3 cells and tube formation of endothelial cells. Our immunoblotting assays indicated that diosgenin potently suppressed the phosphorylation of phosphatidylinositide-3 kinase (PI3K), Akt, extracellular signal regulating kinase (ERK) and c-Jun N-terminal kinase (JNK). In addition, diosgenin significantly decreased the nuclear level of nuclear factor kappa B (NF-κB), suggesting that diosgenin inhibited NF-κB activity. CONCLUSION/SIGNIFICANCE: The results suggested that diosgenin inhibited migration and invasion of PC-3 cells by reducing MMPs expression. It also inhibited ERK, JNK and PI3K/Akt signaling pathways as well as NF-κB activity. These findings reveal new therapeutic potential for diosgenin in anti-metastatic therapy

    Global diversity and biogeography of deep-sea pelagic prokaryotes

    Get PDF
    The deep-sea is the largest biome of the biosphere, and contains more than half of the whole ocean/'s microbes. Uncovering their general patterns of diversity and community structure at a global scale remains a great challenge, as only fragmentary information of deep-sea microbial diversity exists based on regional-scale studies. Here we report the first globally comprehensive survey of the prokaryotic communities inhabiting the bathypelagic ocean using high-throughput sequencing of the 16S rRNA gene. This work identifies the dominant prokaryotes in the pelagic deep ocean and reveals that 50{\%} of the operational taxonomic units (OTUs) belong to previously unknown prokaryotic taxa, most of which are rare and appear in just a few samples. We show that whereas the local richness of communities is comparable to that observed in previous regional studies, the global pool of prokaryotic taxa detected is modest (\~{}3600 OTUs), as a high proportion of OTUs are shared among samples. The water masses appear to act as clear drivers of the geographical distribution of both particle-attached and free-living prokaryotes. In addition, we show that the deep-oceanic basins in which the bathypelagic realm is divided contain different particle-attached (but not free-living) microbial communities. The combination of the aging of the water masses and a lack of complete dispersal are identified as the main drivers for this biogeographical pattern. All together, we identify the potential of the deep ocean as a reservoir of still unknown biological diversity with a higher degree of spatial complexity than hitherto considered.En prensa8,951

    Deciphering the Code for Retroviral Integration Target Site Selection

    Get PDF
    Upon cell invasion, retroviruses generate a DNA copy of their RNA genome and integrate retroviral cDNA within host chromosomal DNA. Integration occurs throughout the host cell genome, but target site selection is not random. Each subgroup of retrovirus is distinguished from the others by attraction to particular features on chromosomes. Despite extensive efforts to identify host factors that interact with retrovirion components or chromosome features predictive of integration, little is known about how integration sites are selected. We attempted to identify markers predictive of retroviral integration by exploiting Precision-Recall methods for extracting information from highly skewed datasets to derive robust and discriminating measures of association. ChIPSeq datasets for more than 60 factors were compared with 14 retroviral integration datasets. When compared with MLV, PERV or XMRV integration sites, strong association was observed with STAT1, acetylation of H3 and H4 at several positions, and methylation of H2AZ, H3K4, and K9. By combining peaks from ChIPSeq datasets, a supermarker was identified that localized within 2 kB of 75% of MLV proviruses and detected differences in integration preferences among different cell types. The supermarker predicted the likelihood of integration within specific chromosomal regions in a cell-type specific manner, yielding probabilities for integration into proto-oncogene LMO2 identical to experimentally determined values. The supermarker thus identifies chromosomal features highly favored for retroviral integration, provides clues to the mechanism by which retrovirus integration sites are selected, and offers a tool for predicting cell-type specific proto-oncogene activation by retroviruses

    Persisting Mixed Cryoglobulinemia in Chikungunya Infection

    Get PDF
    Chikungunya virus is present in tropical Africa and Asia and is transmitted by mosquito bites. The disease is characterized by fever, headache, severe joint pain and transient skin rash for about a week. Most patients experience persisting joint pain and/or stiffness for months to years. In routine practice, diagnosis is based upon serology. Since 2004 there has been an ongoing giant outbreak of Chikungunya fever in East Africa, the Indian Ocean Islands, India and East Asia. In parallel, more than 1,000 travelers were diagnosed with imported Chikungunya infection in most developed countries. Considering the clinical features of our patients (joint pain), we hypothesized that cryoglobulins could be involved in the pathophysiology of the disease as observed in chronic hepatitis C infection. Cryoglobulins, which are immunoglobulins that precipitate when temperature is below 37°C, can induce rheumatic and vascular disorders. From April 2005 through May 2007, we screened all patients with possible imported Chikungunya infection for cryoglobulins. They were present in over 90% of patients, and possibly responsible for the unexpected false negativity of serological assays. Cryoglobulin frequency and levels decreased with time in recovering patients
    corecore