839 research outputs found
Intertarsal Joint Stabilization in a Bateleur Eagle (Terathopius ecaudatus) Using a Novel Application of a Braided Suture and Titanium Button System.
A 32-year-old adult captive male bateleur eagle (Terathopius ecaudatus) with a history of laxity, degenerative joint disease, and varus deviation of the distal left hindlimb for several years was presented for evaluation of left hindlimb lameness and was diagnosed with chronic subluxation of the left intertarsal joint. After failing to improve with conservative management and pain medication, surgical stabilization of the joint was performed using a novel application of a braided suture and titanium button system. Unsatisfactory clinical improvement and postsurgical reevaluation indicated that the initial surgical stabilization was unsuccessful. The surgery was repeated, and the animal showed postsurgical improvement in intertarsal joint stability, weight-bearing, and lameness for a period of several years with use and adjustment of chronic pain medications. The novel surgical technique described in this case report represents an additional treatment option for management of avian intertarsal joint subluxations. Presurgical planning should consider the unique anatomic features and variability of the avian tarsometatarsus to avoid surgical complications
New Product Development Processes in The Australian FMCG Industry.
This paper presents a study of new product development (NPD) processes in two large Australian organisations (National Foods and Lion Nathan) involved in the production of fast moving consumer goods. The research utilises the Australian Business Excellence Framework as a research lens for exploring NPD processes with a focus on the role of sales and operations management. A case study approach used data collected from employees in the two organisations who were involved the NPD process. The results showed a number of significant differences between the two organisations in the conduct and the effectiveness of their NPD processes. Although both organisations employed a formal Stage-Gate process, Lion Nathan did this more successfully than National Foods, perhaps because of Lion Nathan’s greater experience with using stage-gate methodology. This study highlights the importance of the role of sales and operation planning, especially in relation to collaborative demand forecasting. The importance of the leadership role was also evident particularly in relation to ensuring measurement, review, and improvement of NPD processes
Quantum incompressibility of a falling Rydberg atom, and a gravitationally-induced charge separation effect in superconducting systems
Freely falling point-like objects converge towards the center of the Earth.
Hence the gravitational field of the Earth is inhomogeneous, and possesses a
tidal component. The free fall of an extended quantum object such as a hydrogen
atom prepared in a high principal-quantum-number stretch state, i.e., a
circular Rydberg atom, is predicted to fall more slowly that a classical
point-like object, when both objects are dropped from the same height from
above the Earth. This indicates that, apart from "quantum jumps," the atom
exhibits a kind of "quantum incompressibility" during free fall in
inhomogeneous, tidal gravitational fields like those of the Earth. A
superconducting ring-like system with a persistent current circulating around
it behaves like the circular Rydberg atom during free fall. Like the electronic
wavefunction of the freely falling atom, the Cooper-pair wavefunction is
"quantum incompressible." The ions of the ionic lattice of the superconductor,
however, are not "quantum incompressible," since they do not possess a globally
coherent quantum phase. The resulting difference during free fall in the
response of the nonlocalizable Cooper pairs of electrons and the localizable
ions to inhomogeneous gravitational fields is predicted to lead to a charge
separation effect, which in turn leads to a large repulsive Coulomb force that
opposes the convergence caused by the tidal, attractive gravitational force on
the superconducting system. A "Cavendish-like" experiment is proposed for
observing the charge separation effect induced by inhomogeneous gravitational
fields in a superconducting circuit. This experiment would demonstrate the
existence of a novel coupling between gravity and electricity via
macroscopically coherent quantum matter.Comment: `2nd Vienna Symposium for the Foundations of Modern Physics'
Festschrift MS for Foundations of Physic
Can a charged ring levitate a neutral, polarizable object? Can Earnshaw's Theorem be extended to such objects?
Stable electrostatic levitation and trapping of a neutral, polarizable object
by a charged ring is shown to be theoretically impossible. Earnshaw's Theorem
precludes the existence of such a stable, neutral particle trap.Comment: 11 pages, 1 figur
Plasma Turbulence in the Local Bubble
Turbulence in the Local Bubble could play an important role in the
thermodynamics of the gas that is there. The best astronomical technique for
measuring turbulence in astrophysical plasmas is radio scintillation.
Measurements of the level of scattering to the nearby pulsar B0950+08 by
Philips and Clegg in 1992 showed a markedly lower value for the line-of-sight
averaged turbulent intensity parameter is smaller than normal for two of them, but is completely nominal for
the third. This inconclusive status of affairs could be improved by
measurements and analysis of ``arcs'' in ``secondary spectra'' of pulsars.Comment: Submitted to Space Science Reviews as contribution to Proceedings of
ISSI (International Space Science Institute) workshop "From the Heliosphere
to the Local Bubble". Refereed version accepted for publicatio
G28.17+0.05: An unusual giant HI cloud in the inner Galaxy
New 21 cm HI observations have revealed a giant HI cloud in the Galactic
plane that has unusual properties. It is quite well defined, about 150 pc in
diameter at a distance of 5 kpc, and contains as much as 100,000 Solar Masses
of atomic hydrogen. The outer parts of the cloud appear in HI emission above
the HI background, while the central regions show HI self-absorption. Models
which reproduce the observations have a core with a temperature <40 K and an
outer envelope as much as an order of magnitude hotter. The cold core is
elongated along the Galactic plane, whereas the overall outline of the cloud is
approximately spherical. The warm and cold parts of the HI cloud have a
similar, and relatively large, line width of approximately 7 km/s. The cloud
core is a source of weak, anomalously-excited 1720 MHz OH emission, also with a
relatively large line width, which delineates the region of HI self-absorption
but is slightly blue-shifted in velocity. The intensity of the 1720 MHz OH
emission is correlated with N(H) derived from models of the cold core. There is
12CO emission associated with the cloud core. Most of the cloud mass is in
molecules, and the total mass is > 200,000 Solar Masses. In the cold core the
HI mass fraction may be 10 percent. The cloud has only a few sites of current
star formation. There may be about 100 more objects like this in the inner
Galaxy; every line of sight through the Galactic plane within 50 degrees of the
Galactic center probably intersects at least one. We suggest that G28.17+0.05
is a cloud being observed as it enters a spiral arm and that it is in the
transition from the atomic to the molecular state.Comment: 35 pages, inludes 12 figure
A strongly magnetized pulsar within grasp of the Milky Way's supermassive black hole
The center of our Galaxy hosts a supermassive black hole, Sagittarius (Sgr)
A*. Young, massive stars within 0.5 pc of SgrA* are evidence of an episode of
intense star formation near the black hole a few Myr ago, which might have left
behind a young neutron star traveling deep into SgrA*'s gravitational
potential. On 2013 April 25, a short X-ray burst was observed from the
direction of the Galactic center. Thanks to a series of observations with the
Chandra and the Swift satellites, we pinpoint the associated magnetar at an
angular distance of 2.4+/-0.3 arcsec from SgrA*, and refine the source spin
period and its derivative (P=3.7635537(2) s and \dot{P} = 6.61(4)x10^{-12}
s/s), confirmed by quasi simultaneous radio observations performed with the
Green Bank (GBT) and Parkes antennas, which also constrain a Dispersion Measure
of DM=1750+/-50 pc cm^{-3}, the highest ever observed for a radio pulsar. We
have found that this X-ray source is a young magnetar at ~0.07-2 pc from SgrA*.
Simulations of its possible motion around SgrA* show that it is likely (~90%
probability) in a bound orbit around the black hole. The radiation front
produced by the past activity from the magnetar passing through the molecular
clouds surrounding the Galactic center region, might be responsible for a large
fraction of the light echoes observed in the Fe fluorescence features.Comment: ApJ Letters in pres
- …
