36,081 research outputs found
H-MAC: A Hybrid MAC Protocol for Wireless Sensor Networks
In this paper, we propose a hybrid medium access control protocol (H-MAC) for
wireless sensor networks. It is based on the IEEE 802.11's power saving
mechanism (PSM) and slotted aloha, and utilizes multiple slots dynamically to
improve performance. Existing MAC protocols for sensor networks reduce energy
consumptions by introducing variation in an active/sleep mechanism. But they
may not provide energy efficiency in varying traffic conditions as well as they
did not address Quality of Service (QoS) issues. H-MAC, the propose MAC
protocol maintains energy efficiency as well as QoS issues like latency,
throughput, and channel utilization. Our numerical results show that H-MAC has
significant improvements in QoS parameters than the existing MAC protocols for
sensor networks while consuming comparable amount of energy.Comment: 10 pages, IJCNC Journal 201
From scattering theory to complex wave dynamics in non-hermitian PT-symmetric resonators
I review how methods from mesoscopic physics can be applied to describe the
multiple wave scattering and complex wave dynamics in non-hermitian
PT-symmetric resonators, where an absorbing region is coupled symmetrically to
an amplifying region. Scattering theory serves as a convenient tool to classify
the symmetries beyond the single-channel case and leads to effective
descriptions which can be formulated in the energy domain (via Hamiltonians)
and in the time domain (via time evolution operators). These models can then be
used to identify the mesoscopic time and energy scales which govern the
spectral transition from real to complex eigenvalues. The possible presence of
magneto-optical effects (a finite vector potential) in multichannel systems
leads to a variant (termed PTT' symmetry) which imposes the same spectral
constraints as PT symmetry. I also provide multichannel versions of generalized
flux-conservation laws.Comment: 10 pages, 5 figures, minireview for a theme issue, Philosophical
Transactions of the Royal Society
Hepcidin secretion was not directly proportional to intracellular iron-loading in recombinant-TfR1 HepG2 cells: short communication
Hepcidin is the master regulator of systemic iron homeostasis and its dysregulation is observed in several chronic liver diseases. Unlike the extracellular iron-sensing mechanisms, the intracellular iron-sensing mechanisms in the hepatocytes that lead to hepcidin induction and secretion are incompletely understood. Here, we aimed to understand the direct role of intracellular iron-loading on hepcidin mRNA and peptide secretion using our previously characterised recombinant HepG2 cells that over-express the cell-surface iron-importer protein transferrin receptor-1. Gene expression of hepcidin (HAMP) was determined by real-time PCR. Intracellular iron levels and secreted hepcidin peptide levels were measured by ferrozine assay and immunoassay, respectively. These measurements were compared in the recombinant and wild-type HepG2 cells under basal conditions at 30 min, 2 h, 4 h and 24 h. Data showed that in the recombinant cells, intracellular iron content was higher than wild-type cells at 30 min (3.1-fold, p<0.01), 2 h (4.6-fold, p<0.01), 4 h (4.6-fold, p<0.01) and 24 h (1.9-fold, p<0.01). Hepcidin (HAMP) mRNA expression was higher than wild-type cells at 30 min (5.9-fold; p=0.05) and 24 h (6.1-fold; p<0.03), but at 4 h, the expression was lower than that in wild-type cells (p<0.05). However, hepcidin secretion levels in the recombinant cells were similar to those in wild-type cells at all time-points, except at 4 h, when the level was lower than wild-type cells (p<0.01). High intracellular iron in recombinant HepG2 cells did not proportionally increase hepcidin peptide secretion. This suggests a limited role of elevated intracellular iron in hepcidin secretio
Glassy dynamics in granular compaction
Two models are presented to study the influence of slow dynamics on granular
compaction. It is found in both cases that high values of packing fraction are
achieved only by the slow relaxation of cooperative structures. Ongoing work to
study the full implications of these results is discussed.Comment: 12 pages, 9 figures; accepted in J. Phys: Condensed Matter,
proceedings of the Trieste workshop on 'Unifying concepts in glass physics
Adaptive control and noise suppression by a variable-gain gradient algorithm
An adaptive control system based on normalized LMS filters is investigated. The finite impulse response of the nonparametric controller is adaptively estimated using a given reference model. Specifically, the following issues are addressed: The stability of the closed loop system is analyzed and heuristically established. Next, the adaptation process is studied for piecewise constant plant parameters. It is shown that by introducing a variable-gain in the gradient algorithm, a substantial reduction in the LMS adaptation rate can be achieved. Finally, process noise at the plant output generally causes a biased estimate of the controller. By introducing a noise suppression scheme, this bias can be substantially reduced and the response of the adapted system becomes very close to that of the reference model. Extensive computer simulations validate these and demonstrate assertions that the system can rapidly adapt to random jumps in plant parameters
Dynamics of Shear-Transformation Zones in Amorphous Plasticity: Formulation in Terms of an Effective Disorder Temperature
This investigation extends earlier studies of a shear-transformation-zone
(STZ) theory of plastic deformation in amorphous solids. My main purpose here
is to explore the possibility that the configurational degrees of freedom of
such systems fall out of thermodynamic equilibrium with the heat bath during
persistent mechanical deformation, and that the resulting state of
configurational disorder may be characterized by an effective temperature. The
further assumption that the population of STZ's equilibrates with the effective
temperature allows the theory to be compared directly with experimentally
measured properties of metallic glasses, including their calorimetric behavior.
The coupling between the effective temperature and mechanical deformation
suggests an explanation of shear-banding instabilities.Comment: 29 pages, 11 figure
- …