1,726 research outputs found

    Comprehensive Observations of the Bright and Energetic Type Iax SN 2012Z: Interpretation as a Chandrasekhar Mass White Dwarf Explosion

    Get PDF
    We present UV through NIR broad-band photometry, and optical and NIR spectroscopy of Type Iax supernova 2012Z. The data set consists of both early and late-time observations, including the first late phase NIR spectrum obtained for a spectroscopically classified SN Iax. Simple model calculations of its bolometric light curve suggest SN 2012Z produced ~0.3 M_sun of (56)Ni, ejected about a Chandrasekhar mass of material, and had an explosion energy of ~10^51 erg, making it one of the brightest and most energetic SN Iax yet observed. The late phase NIR spectrum of SN 2012Z is found to broadly resemble similar epoch spectra of normal SNe Ia; however, like other SNe Iax, corresponding visual-wavelength spectra differ substantially compared to all supernova types. Constraints from the distribution of IMEs, e.g. silicon and magnesium, indicate that the outer ejecta did not experience significant mixing during or after burning, and the late phase NIR line profiles suggests most of the (56)Ni is produced during high density burning. The various observational properties of SN 2012Z are found to be consistent with the theoretical expectations of a Chandrasekhar mass white dwarf progenitor that experiences a pulsational delayed detonation, which produced several tenths of a solar mass of (56)Ni during the deflagration burning phase and little (or no) (56)Ni during the detonation phase. Within this scenario only a moderate amount of Rayleigh-Taylor mixing occurs both during the deflagration and fallback phase of the pulsation, and the layered structure of the IMEs is a product of the subsequent denotation phase. The fact that the SNe Iax population does not follow a tight brightness-decline relation similar to SNe Ia can then be understood in the framework of variable amounts of mixing during pulsational rebound and variable amounts of (56)Ni production during the early subsonic phase of expansion.Comment: Submitted to A&A, manuscript includes response to referee's comments. 39 pages, including 16 figures, 9 table

    Optical and near infrared observations of SN 2014ck: an outlier among the Type Iax supernovae

    Get PDF
    We present a comprehensive set of optical and near-infrared photometric and spectroscopic observations for SN 2014ck, extending from pre-maximum to six months later. These data indicate that SN 2014ck is photometrically nearly identical to SN 2002cx, which is the prototype of the class of peculiar transients named SNe Iax. Similar to SN 2002cx, SN 2014ck reached a peak brightness MB=17.37±0.15M_B=-17.37 \pm 0.15 mag, with a post-maximum decline-rate Δm15(B)=1.76±0.15\Delta m_{15} (B) = 1.76 \pm 0.15 mag. However, the spectroscopic sequence shows similarities with SN 2008ha, which was three magnitudes fainter and faster declining. In particular, SN 2014ck exhibits extremely low ejecta velocities, 3000\sim 3000 km s1^{-1} at maximum, which are close to the value measured for SN 2008ha and half the value inferred for SN 2002cx. The bolometric light curve of SN 2014ck is consistent with the production of 0.100.03+0.04M0.10^{+0.04}_{-0.03} M_{\odot} of 56^{56}Ni. The spectral identification of several iron-peak features, in particular Co II lines in the NIR, provides a clear link to SNe Ia. Also, the detection of narrow Si, S and C features in the pre-maximum spectra suggests a thermonuclear explosion mechanism. The late-phase spectra show a complex overlap of both permitted and forbidden Fe, Ca and Co lines. The appearance of strong [Ca~II] λλ\lambda\lambda7292, 7324 again mirrors the late-time spectra of SN 2008ha and SN 2002cx. The photometric resemblance to SN 2002cx and the spectral similarities to SN 2008ha highlight the peculiarity of SN 2014ck, and the complexity and heterogeneity of the SNe Iax class.Comment: MNRAS Accepted 2016 March 22. Received 2016 March

    SN 2015ba: A type IIP supernova with a long plateau

    Get PDF
    We present optical photometry and spectroscopy from about a week after explosion to \sim272 d of an atypical Type IIP supernova, SN 2015ba, which exploded in the edge-on galaxy IC 1029. SN 2015ba is a luminous event with an absolute V-band magnitude of -17.1±\pm0.2 mag at 50 d since explosion and has a long plateau lasting for \sim123 d. The distance to the SN is estimated to be 34.8±\pm0.7 Mpc using the expanding photosphere and standard candle methods. High-velocity H-Balmer components constant with time are observed in the late-plateau phase spectra of SN 2015ba, which suggests a possible role of circumstellar interaction at these phases. Both hydrodynamical and analytical modelling suggest a massive progenitor of SN 2015ba with a pre-explosion mass of 24-26 M_\odot. However, the nebular spectra of SN 2015ba exhibit insignificant levels of oxygen, which is otherwise expected from a massive progenitor. This might be suggestive of the non-monotonical link between O-core masses and the zero-age main-sequence mass of pre-supernova stars and/or uncertainties in the mixing scenario in the ejecta of supernovae.Comment: 42 pages, 7 pages Appendix, 20 figures, 10 tables, Accepted for publication in MNRAS, 14-June-201

    The progenitor and early evolution of the Type IIb SN 2016gkg

    Get PDF
    We report initial observations and analysis on the Type IIb SN~2016gkg in the nearby galaxy NGC~613. SN~2016gkg exhibited a clear double-peaked light curve during its early evolution, as evidenced by our intensive photometric follow-up campaign. SN~2016gkg shows strong similarities with other Type IIb SNe, in particular with respect to the \he~emission features observed in both the optical and near infrared. SN~2016gkg evolved faster than the prototypical Type~IIb SN~1993J, with a decline similar to that of SN~2011dh after the first peak. The analysis of archival {\it Hubble Space Telescope} images indicate a pre-explosion source at SN~2016gkg's position, suggesting a progenitor star with a \simmid F spectral type and initial mass 152015-20\msun, depending on the distance modulus adopted for NGC~613. Modeling the temperature evolution within 5days5\,\rm{days} of explosion, we obtain a progenitor radius of 48124\sim\,48-124\rsun, smaller than that obtained from the analysis of the pre-explosion images (240320240-320\rsun).Comment: 7 pages, 5 figures. Submitted to ApJ Letter

    Supernova 2013by: A Type IIL Supernova with a IIP-like light curve drop

    Full text link
    We present multi-band ultraviolet and optical light curves, as well as visual-wavelength and near-infrared spectroscopy of the Type II linear (IIL) supernova (SN) 2013by. We show that SN 2013by and other SNe IIL in the literature, after their linear decline phase that start after maximum, have a sharp light curve decline similar to that seen in Type II plateau (IIP) supernovae. This light curve feature has rarely been observed in other SNe IIL due to their relative rarity and the intrinsic faintness of this particular phase of the light curve. We suggest that the presence of this drop could be used as a physical parameter to distinguish between subclasses of SNe II, rather than their light curve decline rate shortly after peak. Close inspection of the spectra of SN 2013by indicate asymmetric line profiles and signatures of high-velocity hydrogen. Late (less than 90 days after explosion) near-infrared spectra of SN 2013by exhibit oxygen lines, indicating significant mixing within the ejecta. From the late-time light curve, we estimate that 0.029 solar mass of 56Ni was synthesized during the explosion. It is also shown that the V -band light curve slope is responsible for part of the scatter in the luminosity (V magnitude 50 days after explosion) vs. 56Ni relation. Our observations of SN 2013by and other SNe IIL through the onset of the nebular phase indicate that their progenitors are similar to those of SNe IIP.Comment: submitted 2014 December 5th, accepted 2015 January 28t

    Extensive HST Ultraviolet Spectra and Multi-wavelength Observations of SN 2014J in M82 Indicate Reddening and Circumstellar Scattering by Typical Dust

    Full text link
    SN 2014J in M82 is the closest detected Type Ia supernova (SN Ia) in at least 28 years and perhaps in 410 years. Despite its small distance of 3.3 Mpc, SN 2014J is surprisingly faint, peaking at V = 10.6 mag, and assuming a typical SN Ia luminosity, we infer an observed visual extinction of A_V = 2.0 +/- 0.1 mag. But this picture, with R_V = 1.6 +/- 0.2, is too simple to account for all observations. We combine 10 epochs (spanning a month) of HST/STIS ultraviolet through near-infrared spectroscopy with HST/WFC3, KAIT, and FanCam photometry from the optical to the infrared and 9 epochs of high-resolution TRES spectroscopy to investigate the sources of extinction and reddening for SN 2014J. We argue that the wide range of observed properties for SN 2014J is caused by a combination of dust reddening, likely originating in the interstellar medium of M82, and scattering off circumstellar material. For this model, roughly half of the extinction is caused by reddening from typical dust (E(B-V ) = 0.45 mag and R_V = 2.6) and roughly half by scattering off LMC-like dust in the circumstellar environment of SN 2014J.Comment: 17 pages (excluding references and tables), 15 figures, accepted to MNRAS. A high-resolution HST image of SN 2014J in M82 is available upon reques

    Nebular Spectroscopy of the `Blue Bump' Type Ia Supernova 2017cbv

    Full text link
    We present nebular phase optical and near-infrared spectroscopy of the Type Ia supernova (SN) 2017cbv. The early light curves of SN~2017cbv showed a prominent blue bump in the UU, BB and gg bands lasting for \sim5 d. One interpretation of the early light curve was that the excess blue light was due to shocking of the SN ejecta against a nondegenerate companion star -- a signature of the single degenerate scenario. If this is the correct interpretation, the interaction between the SN ejecta and the companion star could result in significant Hα\alpha (or helium) emission at late times, possibly along with other species, depending on the companion star and its orbital separation. A search for Hα\alpha emission in our +302 d spectrum yields a nondetection, with a LHαL_{H\alpha}<<8.0×\times1035^{35} erg/s (given an assumed distance of DD=12.3 Mpc), which we have verified by implanting simulated Hα\alpha emission into our data. We make a quantitative comparison to models of swept-up material stripped from a nondegenerate companion star, and limit the mass of hydrogen that might remain undetected to MH<1×104M_{\rm H} < 1 \times 10^{-4} M\rm M_{\odot}. A similar analysis of helium star related lines yields a MHe<5×104M_{\rm He} < 5 \times 10^{-4} M\rm M_{\odot}. Taken at face value, these results argue against a nondegenerate H or He-rich companion in Roche lobe overflow as the progenitor of SN 2017cbv. Alternatively, there could be weaknesses in the envelope-stripping and radiative transfer models necessary to interpret the strong H and He flux limits.Comment: 11 pages, 3 figures, 2 tables. ApJ accepte
    corecore