3,908 research outputs found

    Remarks on the analytic structure of supersymmetric effective actions

    Full text link
    We study the effective superpotential of N=1 supersymmetric gauge theories with a mass gap, whose analytic properties are encoded in an algebraic curve. We propose that the degree of the curve equals the number of semiclassical branches of the gauge theory. This is true for supersymmetric QCD with one adjoint and polynomial superpotential, where the two sheets of its hyperelliptic curve correspond to the gauge theory pseudoconfining and higgs branches. We verify this proposal in the new case of supersymmetric QCD with two adjoints and superpotential V(X)+XY^2, which is the confining phase deformation of the D_{n+2} SCFT. This theory has three kinds of classical vacua and its curve is cubic. Each of the three sheets of the curve corresponds to one of the three semiclassical branches of the gauge theory. We show that one can continuously interpolate between these branches by varying the couplings along the moduli space.Comment: 49 pages, 3 figures, harvmac; typos correcte

    Dark Matter and Pseudo-flat Directions in Weakly Coupled SUSY Breaking Sectors

    Full text link
    We consider candidates for dark matter in models of gauge mediated supersymmetry breaking, in which the supersymmetry breaking sector is weakly coupled and calculable. Such models typically contain classically flat directions, that receive one-loop masses of a few TeV. These pseudo-flat directions provide a new mechanism to account for the cold dark matter relic abundance. We discuss also the possibility of heavy gravitino dark matter in such models.Comment: 16 pages, 2 figures. v2: comments, refs adde

    Planar limits of three-dimensional incompressible flows with helical symmetry

    Full text link
    Helical symmetry is invariance under a one-dimensional group of rigid motions generated by a simultaneous rotation around a fixed axis and translation along the same axis. The key parameter in helical symmetry is the step or pitch, the magnitude of the translation after rotating one full turn around the symmetry axis. In this article we study the limits of three-dimensional helical viscous and inviscid incompressible flows in an infinite circular pipe, with respectively no-slip and no-penetration boundary conditions, as the step approaches infinity. We show that, as the step becomes large, the three-dimensional helical flow approaches a planar flow, which is governed by the so-called two-and-half Navier-Stokes and Euler equations, respectively.Comment: 30 page

    Vanishing Viscosity Limits and Boundary Layers for Circularly Symmetric 2D Flows

    Full text link
    We continue the work of Lopes Filho, Mazzucato and Nussenzveig Lopes [LMN], on the vanishing viscosity limit of circularly symmetric viscous flow in a disk with rotating boundary, shown there to converge to the inviscid limit in L2L^2-norm as long as the prescribed angular velocity α(t)\alpha(t) of the boundary has bounded total variation. Here we establish convergence in stronger L2L^2 and LpL^p-Sobolev spaces, allow for more singular angular velocities α\alpha, and address the issue of analyzing the behavior of the boundary layer. This includes an analysis of concentration of vorticity in the vanishing viscosity limit. We also consider such flows on an annulus, whose two boundary components rotate independently. [LMN] Lopes Filho, M. C., Mazzucato, A. L. and Nussenzveig Lopes, H. J., Vanishing viscosity limit for incompressible flow inside a rotating circle, preprint 2006

    Neutral Pion Photoproduction on Nuclei in Baryon Chiral Perturbation Theory

    Get PDF
    Threshold neutral pion photoproduction on light nuclei is studied in the framework of baryon chiral perturbation theory. We obtain a general formula for the electric dipole amplitude in the special case of neutral pion photoproduction on a nucleus. To third order in small momenta, the amplitude is a sum of 2- and 3-body interactions with no undetermined parameters. With reasonable input from the single nucleon sector, our result for neutral pion photoproduction on the deuteron is in agreement with experiment.Comment: 24 pages, 4 uuencoded postscript figures, uses LaTex and epsf.tex. Added footnote and references. Minor changes in text and forma

    An innovative approach on directed energy deposition optimization: A study of the process environment's influence on the quality of Ti-6Al-4V Samples

    Get PDF
    Blown powder additive manufacturing technologies are not restricted to the use of a process chamber. This feature allows to build larger components with respect to conventional powder bed processes. This peculiarity is mostly promising for manufacturing large components or repairing/rebuilding parts of large systems. The main downside of using an open environment, even if a protective shielding gas system is adopted, is the lack of control of process atmosphere. This is particularly critical for titanium alloys which are very sensitive to oxygen/nitrogen pick-up; they have a detrimental effect on ductility, by causing embrittlement and possibly leading to the formation of cracks. It is then important to address how environmental factors, such as process atmosphere and platform temperature, impact not only on the processability but also on the final component properties, both from a compositional and mechanical point of view. The correlations between these environmental factors and microstructure, interstitials content, grain size, and hardness were investigated. Moreover, the Hall-Petch equation was then adopted to additive manufacturing microstructures, characterized by a columnar grain morphology, and used to further investigate the relationship intercurring between grains and hardness and how different microstructures might influence this correlation

    Super-Group Field Cosmology

    Full text link
    In this paper we construct a model for group field cosmology. The classical equations of motion for the non-interactive part of this model generate the Hamiltonian constraint of loop quantum gravity for a homogeneous isotropic universe filled with a scalar matter field. The interactions represent topology changing processes that occurs due to joining and splitting of universes. These universes in the multiverse are assumed to obey both bosonic and fermionic statistics, and so a supersymmetric multiverse is constructed using superspace formalism. We also introduce gauge symmetry in this model. The supersymmetry and gauge symmetry are introduced at the level of third quantized fields, and not the second quantized ones. This is the first time that supersymmetry has been discussed at the level of third quantized fields.Comment: 14 pages, 0 figures, accepted for publication in Class. Quant. Gra
    • …
    corecore