270 research outputs found

    Impact of disorder on the 5/2 fractional quantum Hall state

    Full text link
    We compare the energy gap of the \nu=5/2 fractional quantum Hall effect state obtained in conventional high mobility modulation doped quantum well samples with those obtained in high quality GaAs transistors (heterojunction insulated gate field-effect transistors). We are able to identify the different roles that long range and short range disorders play in the 5/2 state and observe that the long range potential fluctuations are more detrimental to the strength of the 5/2 state than short-range potential disorder.Comment: PRL 106, 206806 (2011

    Dipolar Relaxation in an ultra-cold Gas of magnetically trapped chromium atoms

    Full text link
    We have investigated both theoretically and experimentally dipolar relaxation in a gas of magnetically trapped chromium atoms. We have found that the large magnetic moment of 6 ÎŒB\mu_B results in an event rate coefficient for dipolar relaxation processes of up to 3.2⋅10−113.2\cdot10^{-11} cm3^{3}s−1^{-1} at a magnetic field of 44 G. We present a theoretical model based on pure dipolar coupling, which predicts dipolar relaxation rates in agreement with our experimental observations. This very general approach can be applied to a large variety of dipolar gases.Comment: 9 pages, 9 figure

    Atomic Bose Gas with Negative Scattering Length

    Full text link
    We derive the equation of state of a dilute atomic Bose gas with an interatomic interaction that has a negative scattering length and argue that two continuous phase transitions, occuring in the gas due to quantum degeneracy effects, are preempted by a first-order gas-liquid or gas-solid transition depending on the details of the interaction potential. We also discuss the consequences of this result for future experiments with magnetically trapped spin-polarized atomic gasses such as lithium and cesium.Comment: 16 PAGES, REVTEX 3.0, ACCEPTED FOR PUBLICATION IN PHYS. REV.

    Quantum Limits of Stochastic Cooling of a Bosonic Gas

    Full text link
    The quantum limits of stochastic cooling of trapped atoms are studied. The energy subtraction due to the applied feedback is shown to contain an additional noise term due to atom-number fluctuations in the feedback region. This novel effect is shown to dominate the cooling efficiency near the condensation point. Furthermore, we show first results that indicate that Bose--Einstein condensation could be reached via stochastic cooling.Comment: 5 pages, 3 figures, to appear in Phys. Rev.

    Dipolar collisions of polar molecules in the quantum regime

    Full text link
    Ultracold polar molecules offer the possibility of exploring quantum gases with interparticle interactions that are strong, long-range, and spatially anisotropic. This is in stark contrast to the dilute gases of ultracold atoms, which have isotropic and extremely short-range, or "contact", interactions. The large electric dipole moment of polar molecules can be tuned with an external electric field; this provides unique opportunities such as control of ultracold chemical reactions, quantum information processing, and the realization of novel quantum many-body systems. In spite of intense experimental efforts aimed at observing the influence of dipoles on ultracold molecules, only recently have sufficiently high densities been achieved. Here, we report the observation of dipolar collisions in an ultracold molecular gas prepared close to quantum degeneracy. For modest values of an applied electric field, we observe a dramatic increase in the loss rate of fermionic KRb molecules due to ultrcold chemical reactions. We find that the loss rate has a steep power-law dependence on the induced electric dipole moment, and we show that this dependence can be understood with a relatively simple model based on quantum threshold laws for scattering of fermionic polar molecules. We directly observe the spatial anisotropy of the dipolar interaction as manifested in measurements of the thermodynamics of the dipolar gas. These results demonstrate how the long-range dipolar interaction can be used for electric-field control of chemical reaction rates in an ultracold polar molecule gas. The large loss rates in an applied electric field suggest that creating a long-lived ensemble of ultracold polar molecules may require confinement in a two-dimensional trap geometry to suppress the influence of the attractive dipolar interactions

    Exciting, Cooling And Vortex Trapping In A Bose-Condensed Gas

    Full text link
    A straight forward numerical technique, based on the Gross-Pitaevskii equation, is used to generate a self-consistent description of thermally-excited states of a dilute boson gas. The process of evaporative cooling is then modelled by following the time evolution of the system using the same equation. It is shown that the subsequent rethermalisation of the thermally-excited state produces a cooler coherent condensate. Other results presented show that trapping vortex states with the ground state may be possible in a two-dimensional experimental environment.Comment: 9 pages, 7 figures. It's worth the wait! To be published in Physical Review A, 1st February 199

    High frequency sound in superfluid 3He-B

    Full text link
    We present measurements of the absolute phase velocity of transverse and longitudinal sound in superfluid 3He-B at low temperature, extending from the imaginary squashing mode to near pair-breaking. Changes in the transverse phase velocity near pair-breaking have been explained in terms of an order parameter collective mode that arises from f-wave pairing interactions, the so-called J=4- mode. Using these measurements, we establish lower bounds on the energy gap in the B-phase. Measurement of attenuation of longitudinal sound at low temperature and energies far above the pair-breaking threshold, are in agreement with the lower bounds set on pair-breaking. Finally, we discuss our estimations for the strength of the f-wave pairing interactions and the Fermi liquid parameter, F4s.Comment: 15 pages, 8 figures, accepted to J. Low Temp. Phy

    Hidden spin-current conservation in 2d Fermi liquids

    Get PDF
    We report the existence of regimes of the two dimensional Fermi liquid that show unusual conservation of the spin current and may be tuned by varying some parameter like the density of fermions. We show that for reasonable models of the effective interaction the spin current may be conserved in general in 2d, not only for a particular regime. Low temperature spin waves propagate distinctively in these regimes and entirely new ``spin-acoustic'' modes are predicted for scattering-dominated temperature ranges. These new high-temperature propagating spin waves provide a clear signature for the experimental search of such regimes.Comment: 4 pages, no figures, revised version, accepted for pub. in the PR

    Policy Brief: UNSCR 1325: The Challenges of Framing Women’s Rights as a Security Matter

    Get PDF
    While UN Security Council Resolution (UNSCR) 1325 has certainly increased awareness among international actors about women’s and gender issues in armed conflict, opened new spaces for dialogue and partnerships from global to local levels, and even created opportunities for new resources for women’s rights, successes remain limited and notably inconsistent. To understand some of these shortcomings and think creatively about how to move the women, peace and security agenda forward, it is essential to understand the conceptual assumptions underscoring UNSCR 1325

    Cold Collision Frequency Shift of the 1S-2S Transition in Hydrogen

    Get PDF
    We have observed the cold collision frequency shift of the 1S-2S transition in trapped spin-polarized atomic hydrogen. We find ΔΜ1S−2S=−3.8(8)×10−10nHzcm3\Delta \nu_{1S-2S} = -3.8(8)\times 10^{-10} n Hz cm^3, where nn is the sample density. From this we derive the 1S-2S s-wave triplet scattering length, a1S−2S=−1.4(3)a_{1S-2S}=-1.4(3) nm, which is in fair agreement with a recent calculation. The shift provides a valuable probe of the distribution of densities in a trapped sample.Comment: Accepted for publication in PRL, 9 pages, 4 PostScript figures, ReVTeX. Updated connection of our measurement to theoretical wor
    • 

    corecore