162 research outputs found

    Investigation of immiscible systems and potential applications

    Get PDF
    The droplet coalescence kinetics at 0 g and 1 g were considered for two systems which contained liquid droplets in a host liquid. One of these (Al-In) typified a system containing a liquid phase miscibility gap and the order (oil-water) a mixture of two essentially insoluble liquids. A number of coalescence mechanisms potentially prominent at low g in this system were analyzed and explanations are presented for the observed unusual stability of the emulsion. Ground base experiments were conducted on the coalescence of In droplets in and Al-In alloy during cooling through the miscibility gap at different cooling rates. These were in qualitative agreement with the computer simulation. Potential applications for systems with liquid phase miscibility gaps were explored. Possibilities included superconductors, electrical contact materials, superplastic materials, catalysts, magnetic materials, and others. The role of space processing in their production was also analyzed

    Oxidation of Zr-2.5 Nb Nuclear Reactor Pressure Tubes A New Model

    Get PDF
    The corrosion and associated deuterium (D) uptake of Zr alloy nuclear reactor pressure tubes have been studied for over 40 years. Zircaloy tubes exhibit rapid D ingress after a period of in-reactor exposure, and have been replaced with tubes fabricated from the more resistant Zr-2.5 wt % Nb alloy. Recently, however, a small percentage of Zr-2.5 Nb tubes have been found to contain high D contents. There is currently no clear understanding of the mechanism for this increased D uptake, and concern exists that an increasing number of high-D tubes will develop with time. A new model for Zr-2.5 Nb corrosion is presented in this paper. The rate of corrosion is shown to be dependent on the rate of transformation of the protective inner oxide layer (closer to the metal) to a porous outer layer. The mechanism of this transformation is not known and should be the subject of future investigations. It is assumed in the model that zirconia chemically dissolves into the solution at the pore bottom. The rate of this dissolution reaction depends on the local pH, which increases if there is a buildup of deuteroxyl ions generated in the cathodic part of the Zr corrosion reaction. A mathematical description of this model, containing several parameters with unknown values, is presented. Assigning certain values to these parameters results in predictions of oxide formation (and thus D buildup) that correspond well with observations.Support of this work by the Atomic Energy Control Board under AECB project no. 2.349.1 is gratefully acknowledged

    Storage and Release of Soluble Hexavalent Chromium from Chromate Conversion Coatings on Al Alloys Kinetics of Release

    Get PDF
    The release of chromate ions from chromate conversion coatings (CCCs) on Al alloys was studied, and the effect of aging of CCCs on the chromate release kinetics was investigated. Chromate release from CCCs into aqueous solutions was monitored by measuring the change in the chromate concentration in solution using UV-visible spectroscopy. Heat-treatment of the CCC greatly reduced the chromate release rate. The chromate release rate also decreased with increasing aging time at room temperature. A diffusion-control model was proposed based on the notion that the CCC in an aqueous solution is a porous, two-phase structure consisting of a solid phase with adsorbed Cr(VI) species that is in local Langmuir-type equilibrium with an interpenetrating solution phase. This model results in a concentration gradient of soluble Cr(VI) in the solution phase of the CCC as chromate is released. The concentration and diffusion coefficients of soluble Cr(VI) in CCC were estimated. The estimated diffusion coefficient tended to decrease with aging time, suggesting that the CCC is modified with aging time.This work was supported under Air Force Office of Scientific Research Multidisciplinary University Research Initiative contract no. F49620-96-1-0479

    Incomplete approach to homoclinicity in a model with bent-slow manifold geometry

    Full text link
    The dynamics of a model, originally proposed for a type of instability in plastic flow, has been investigated in detail. The bifurcation portrait of the system in two physically relevant parameters exhibits a rich variety of dynamical behaviour, including period bubbling and period adding or Farey sequences. The complex bifurcation sequences, characterized by Mixed Mode Oscillations, exhibit partial features of Shilnikov and Gavrilov-Shilnikov scenario. Utilizing the fact that the model has disparate time scales of dynamics, we explain the origin of the relaxation oscillations using the geometrical structure of the bent-slow manifold. Based on a local analysis, we calculate the maximum number of small amplitude oscillations, ss, in the periodic orbit of LsL^s type, for a given value of the control parameter. This further leads to a scaling relation for the small amplitude oscillations. The incomplete approach to homoclinicity is shown to be a result of the finite rate of `softening' of the eigen values of the saddle focus fixed point. The latter is a consequence of the physically relevant constraint of the system which translates into the occurrence of back-to-back Hopf bifurcation.Comment: 14 Figures(Postscript); To Appear in Physica D : Nonlinear Phenomen

    Un "simposio di sapienza e affetto"

    Get PDF
    Muscle hypertrophy occurs following increased protein synthesis, which requires activation of the ribosomal complex. Additionally, increased translational capacity via elevated ribosomal RNA (rRNA) synthesis has also been implicated in resistance training-induced skeletal muscle hypertrophy. The time course of ribosome biogenesis following resistance exercise (RE) and the impact exerted by differing recovery strategies remains unknown. In the present study, the activation of transcriptional regulators, the expression levels of pre-rRNA, and mature rRNA components were measured through 48 h after a single-bout RE. In addition, the effects of either low-intensity cycling (active recovery, ACT) or a cold-water immersion (CWI) recovery strategy were compared. Nine male subjects performed two bouts of high-load RE randomized to be followed by 10 min of either ACT or CWI. Muscle biopsies were collected before RE and at 2, 24, and 48 h after RE. RE increased the phosphorylation of the p38-MNK1-eIF4E axis, an effect only evident with ACT recovery. Downstream, cyclin D1 protein, total eIF4E, upstream binding factor 1 (UBF1), and c-Myc proteins were all increased only after RE with ACT. This corresponded with elevated abundance of the pre-rRNAs (45S, ITS-28S, ITS-5.8S, and ETS-18S) from 24 h after RE with ACT. In conclusion, coordinated upstream signaling and activation of transcriptional factors stimulated pre-rRNA expression after RE. CWI, as a recovery strategy, markedly blunted these events, suggesting that suppressed ribosome biogenesis may be one factor contributing to the impaired hypertrophic response observed when CWI is used regularly after exercise

    The mechanism of sputter-induced orientation change in YBCO films on MgO (001)

    Full text link
    AbstractThe mechanisms of the sputter-induced orientation change in YBa2Cu3O7-x(YBCO) films grown on MgO (001) substrates by pulsed organometallic beam epitaxy (POMBE) are investigated by x-ray diffraction, Rutherford backscatter spectroscopy (RBS), cross-section TEM (XTEM) and microanalysis. It is found that the W atom implantation concurring with the ion sputtering plays an important role in effecting the orientation change. This implantation changes the surface structure of the substrate and induces an intermediate layer in the initial growth of the YBCO film, which in turn acts as a template that induces the orientation change. It seems that the surface morphology change caused by ion sputtering has only a minor effect on the orientation change.</jats:p

    Removal of <i>p16</i> <sup><i>INK4</i></sup> Expressing Cells in Late Life has Moderate Beneficial Effects on Skeletal Muscle Function in Male Mice.

    Get PDF
    Aging results in the progressive accumulation of senescent cells in tissues that display loss of proliferative capacity and acquire a senescence-associated secretory phenotype (SASP). The tumor suppressor, p16 INK4A , which slows the progression of the cell cycle, is highly expressed in most senescent cells and the removal of p16-expressing cells has been shown to be beneficial to tissue health. Although much work has been done to assess the effects of cellular senescence on a variety of different organs, little is known about the effects on skeletal muscle and whether reducing cellular senescent load would provide a therapeutic benefit against age-related muscle functional decline. We hypothesized that whole-body ablation of p16-expressing cells in the advanced stages of life in mice would provide a therapeutic benefit to skeletal muscle structure and function. Treatment of transgenic p16-3MR mice with ganciclovir (GCV) from 20 to 26 months of age resulted in reduced p16 mRNA levels in muscle. At 26 months of age, the masses of tibialis anterior, extensor digitorum longus, gastrocnemius and quadriceps muscles were significantly larger in GCV-treated compared with vehicle-treated mice, but this effect was limited to male mice. Maximum isometric force for gastrocnemius muscles was also greater in GCV-treated male mice compared to controls. Further examination of muscles of GCV- and vehicle-treated mice showed fewer CD68-positive macrophages present in the tissue following GCV treatment. Plasma cytokine levels were also measured with only one, granulocyte colony stimulating factor (G-CSF), out of 22 chemokines analyzed was reduced in GCV-treated mice. These findings show that genetic ablation of p16+ senescent cells provides moderate and sex specific therapeutic benefits to muscle mass and function
    corecore