1,571 research outputs found

    Aggregative movement and front propagation for bi-stable population models

    Get PDF
    Front propagation for the aggregation-diffusion-reaction equation is investigated, where f is a bi-stable reaction-term and D(v) is a diffusion coefficient with changing sign, modeling aggregating-diffusing processes. We provide necessary and sufficient conditions for the existence of traveling wave solutions and classify them according to how or if they attain their equilibria at finite times. We also show that the dynamics can exhibit the phenomena of finite speed of propagation and/or finite speed of saturation

    Diffusion-aggregation processes with mono-stable reaction terms

    Get PDF
    This paper analyses front propagation of the equation uτ=[D(u)vx]x+f(v)      τ<0,x∈Ru_\tau=[D(u)v_x]_x +f(v) \;\;\; \tau < 0, x \in \mathbb{R} where ff is a monostable (ie Fisher-type) nonlinear reaction term and D(v)D(v) changes its sign once, from positive to negative values,in the interval v∈[0,1] v \in[0,1] where the process is studied. This model equation accounts for simultaneous diffusive and aggregative behaviors of a population dynamic depending on the population density vv at time τ\tau and position xx. The existence of infinitely many travelling wave solutions is proven. These fronts are parametrized by their wave speed and monotonically connect the stationary states u = 0 and v = 1. In the degenerate case, i.e. when D(0) and/or D(1) = 0, sharp profiles appear, corresponding to the minimum wave speed. They also have new behaviors, in addition to those already observed in diffusive models, since they can be right compactly supported, left compactly supported, or both. The dynamics can exhibit, respectively, the phenomena of finite speed of propagation, finite speed of saturation, or both

    Continuous dependence in front propagation of convective reaction-diffusion equations

    Get PDF
    Continuous dependence of the threshold wave speed and of thetravelling wave profiles for reaction-diffusion-convection equationsis here studied with respect to the diffusion, reaction and convection terms

    A New Approach to Transport Coefficients in the Quantum Spin Hall Effect

    Get PDF
    We investigate some foundational issues in the quantum theory of spin transport, in the general case when the unperturbed Hamiltonian operator H does not commute with the spin operator in view of Rashba interactions, as in the typical models for the quantum spin Hall effect. A gapped periodic one-particle Hamiltonian H is perturbed by adding a constant electric field of intensity ε≪ 1 in the j-th direction, and the linear response in terms of a S-current in the i-th direction is computed, where S is a generalized spin operator. We derive a general formula for the spin conductivity that covers both the choice of the conventional and of the proper spin current operator. We investigate the independence of the spin conductivity from the choice of the fundamental cell (unit cell consistency), and we isolate a subclass of discrete periodic models where the conventional and the proper S-conductivity agree, thus showing that the controversy about the choice of the spin current operator is immaterial as far as models in this class are concerned. As a consequence of the general theory, we obtain that whenever the spin is (almost) conserved, the spin conductivity is (approximately) equal to the spin-Chern number. The method relies on the characterization of a non-equilibrium almost-stationary state (NEASS), which well approximates the physical state of the system (in the sense of space-adiabatic perturbation theory) and allows moreover to compute the response of the adiabatic S-current as the trace per unit volume of the S-current operator times the NEASS. This technique can be applied in a general framework, which includes both discrete and continuum models

    Harmonization of design-based mapping for spatial populations

    Get PDF
    The mapping of a survey variable throughout a continuum or for finite populations of units is usually performed from a model-dependent perspective. Nevertheless, when a sample of locations/units is selected by a probabilistic sampling scheme, the complex task of modelling can be avoided by using the inverse distance weighting interpolator and deriving the properties of maps in a design-based perspective. Conditions ensuring consistency of maps can be derived mainly based on some obvious assumptions about the pattern of the survey variable throughout the study region as well from the feature of the sampling scheme adopted to select locations/units. Nevertheless, in a design-based setting the totals of the survey variable for a set of domains partitioning the study region are commonly estimated by traditional estimators such as the Horvitz–Thompson estimator in the case of finite populations or the Monte-Carlo estimator in the case of continuous populations or by related estimators exploiting the information of auxiliary variables. That necessarily gives rise to different total estimates with respect to those achieved from the resulting maps as the sum of the interpolated values within domains. To obtain non-discrepant results, a harmonization of maps is here suggested, in such a way that the resulting totals arising from maps coincide with those achieved by traditional estimation. The capacity of the harmonization procedure to maintain consistency is argued theoretically and checked by a simulation study performed on some real population

    Harmonization of design-based mapping for spatial populations

    Get PDF
    The mapping of a survey variable throughout a continuum or for finite populations of units is usually performed from a model-dependent perspective. Nevertheless, when a sample of locations/units is selected by a probabilistic sampling scheme, the complex task of modelling can be avoided by using the inverse distance weighting interpolator and deriving the properties of maps in a design-based perspective. Conditions ensuring consistency of maps can be derived mainly based on some obvious assumptions about the pattern of the survey variable throughout the study region as well from the feature of the sampling scheme adopted to select locations/units. Nevertheless, in a design-based setting the totals of the survey variable for a set of domains partitioning the study region are commonly estimated by traditional estimators such as the Horvitz–Thompson estimator in the case of finite populations or the Monte-Carlo estimator in the case of continuous populations or by related estimators exploiting the information of auxiliary variables. That necessarily gives rise to different total estimates with respect to those achieved from the resulting maps as the sum of the interpolated values within domains. To obtain non-discrepant results, a harmonization of maps is here suggested, in such a way that the resulting totals arising from maps coincide with those achieved by traditional estimation. The capacity of the harmonization procedure to maintain consistency is argued theoretically and checked by a simulation study performed on some real populations

    Development of a CO2 sensor for extracorporeal life support applications

    Get PDF
    Measurement of carbon dioxide (CO2) in medical applications is a well-established method for monitoring patient’s pulmonary function in a noninvasive way widely used in emergency, intensive care, and during anesthesia. Even in extracorporeal-life support applications, such as Extracorporeal Carbon Dioxide Removal (ECCO2R), Extracorporeal Membrane Oxygenation (ECMO), and cardiopulmonary by-pass (CPB), measurement of the CO2 concentration in the membrane oxygenator exhaust gas is proven to be useful to evaluate the treatment progress as well as the performance of the membrane oxygenator. In this paper, we present a new optical sensor specifically designed for the measurement of CO2 concentration in oxygenator exhaust gas. Further, the developed sensor allows measurement of the gas flow applied to the membrane oxygenator as well as the estimation of the CO2 removal rate. A heating module is implemented within the sensor to avoid water vapor condensation. Effects of temperature on the sensor optical elements of the sensors are disclosed, as well as a method to avoid signal–temperature dependency. The newly developed sensor has been tested and compared against a reference device routinely used in clinical practice in both laboratory and in vivo conditions. Results show that sensor accuracy fulfills the requirements of the ISO standard, and that is suitable for clinical applications

    Molybdenum sputtering film characterization for high gradient accelerating structures

    Full text link
    Technological advancements are strongly required to fulfill the demands of new accelerator devices with the highest accelerating gradients and operation reliability for the future colliders. To this purpose an extensive R&D regarding molybdenum coatings on copper is in progress. In this contribution we describe chemical composition, deposition quality and resistivity properties of different molybdenum coatings obtained via sputtering. The deposited films are thick metallic disorder layers with different resistivity values above and below the molibdenum dioxide reference value. Chemical and electrical properties of these sputtered coatings have been characterized by Rutherford backscattering, XANES and photoemission spectroscopy. We will also present a three cells standing wave section coated by a molybdenum layer ∼\sim 500 nm thick designed to improve the performance of X-Band accelerating systems.Comment: manuscript has been submitted and accepted by Chinese Physics C (2012

    Design optimization of meta-material transmission lines for linear and non-linear microwave signal processing

    Get PDF
    The possibility to use CRLH (Composite Right-/Left-Handed) cells to realize both distributed wide-band filters for linear signal processing and non-linear devices like frequency doublers is investigated analytically and numerically. Full-wave electromagnetic simulations are performed for the filtering structure by means of a commercial software package and confirm the validity of the analytic results. Numerical results for CRLH NLTL (Non-Linear Transmission Line) obtained by using the Microwave Office are discussed, providing design considerations about the synthesis of such a component

    Angular dependence of copper surface damage induced by an intense coherent thz radiation beam

    Get PDF
    In this work, we show the damage induced by an intense coherent terahertz (THz) beam on copper surfaces. The metallic surface was irradiated by multiple picosecond THz pulses generated by the Free Electron Laser (FEL) at the ISIR facility of the Osaka University, reaching an electric field on the sample surface up to ~4 GV/m. No damage occurs at normal incidence, while images and spectroscopic analysis of the surface point out a clear dependence of the damage on the incidence angle, the electric field intensity, and polarization of the pulsed THz radiation. Ab initio analysis shows that the damage at high incidence angles could be related to the increase of the absorbance, i.e., to the increase of the temperature around or above 1000â—¦ C. The experimental approach we introduced with multiple fast irradiations represents a new powerful technique useful to test, in a reproducible way, the damage induced by an intense electric gradient on copper and other metallic surfaces in view of future THz-based compact particle accelerators
    • …
    corecore