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Abstract: In this work, we show the damage induced by an intense coherent terahertz (THz) beam on
copper surfaces. The metallic surface was irradiated by multiple picosecond THz pulses generated
by the Free Electron Laser (FEL) at the ISIR facility of the Osaka University, reaching an electric field
on the sample surface up to ~4 GV/m. No damage occurs at normal incidence, while images and
spectroscopic analysis of the surface point out a clear dependence of the damage on the incidence
angle, the electric field intensity, and polarization of the pulsed THz radiation. Ab initio analysis
shows that the damage at high incidence angles could be related to the increase of the absorbance,
i.e., to the increase of the temperature around or above 1000 ◦C. The experimental approach we
introduced with multiple fast irradiations represents a new powerful technique useful to test, in a
reproducible way, the damage induced by an intense electric gradient on copper and other metallic
surfaces in view of future THz-based compact particle accelerators.
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1. Introduction

The damage induced by a strong EM field on metallic surfaces is a widely studied topic [1–3],
where the aim is to understand the response of a material under strong applied electrical forces and the
damage generated on the irradiated area. Experiments with intense electromagnetic radiation in the
IR-UV range have been performed since the availability of high-intensity lasers [4,5]. Reflection and
absorption processes of a high-intensity optical laser pulse by an extremely smooth metal surface have
already been studied [5–8]. In particular, laser-induced damaged morphologies and their cumulative
effects given by single pulses have already been highlighted [9].

The THz electromagnetic spectral range, typically referred to frequencies between 100 GHz
and 10 THz, is fundamental for the spectroscopic analysis of many condensed matter
systems [10–16], low dimensional semiconductors and superconducting materials with different
electronic properties [17–20]. This frequency range is, in fact, resonant with molecular and phonon
excitations and with free electrons in metals [21].
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Despite its importance, the latest improvements in THz generation and detection have been
hindered by the lack of suitable high-intensity sources. Recent developments have seen the appearance
of optical techniques based on non-linear effects, like the optical rectification process in organic
and inorganic crystals [22,23]. One of the most efficient ways to generate high-intensity THz
pulses is based on relativistic electrons both in a Free Electron Laser (FEL) and a Linac, where
the synchrotron radiation emission from the accelerated electron beam is coherent and (as for FELs)
nearly monochromatic [13,14,24,25].

High-intensity THz radiation is also useful for producing a high-gradient electric field for particle
acceleration [26]. The investigation of the behaviour of metallic cavities [27] under the application of a
high-intensity THz field represents an important issue in the development of compact accelerators [22]
and to test protective coatings designed to reduce the damaging processes [28,29]. Copper, in particular,
represents a strategic material to study under high-gradient electric fields, due to its extensive use in
many accelerating components subjected to high electric fields.

Recently Agranat et al. [9] investigated the damage induced on thin metallic films by a high-fluence
pulsed THz radiation, while no irradiation studies have been performed on thick metallic samples yet.
Here, we highlight the experimental results obtained by illuminating the surface of smooth copper
thick samples with intense THz pulses generated at ISIR-FEL, a facility of the Osaka University [25],
reaching an electric field on the sample surface up to ~4 GV/m. Using multiple THz pulses, at the
fluence below the single-pulse damage threshold, we show evidence of angular dependent damage
of copper substrates. We analyze the damage through chemical analysis of the surface by Raman
spectroscopy. We used a simple heat model coupled with Fresnel equations to explain the damaging
mechanism taking into account the change of the surface reflectance vs. the incidence radiation angle.

2. Material and Methods

The THz-FEL at the quantum beam research facility of the Institute of Scientific and Industrial
Research (ISIR) at the Osaka University allows the emission of nearly monochromatic coherent radiation
through the acceleration of an electron beam by a LINAC up to 15 MeV. Electrons injected in the
undulator emit horizontally polarized synchrotron radiation [25,30]. The optical system described
in [25,31] allows the extraction of the coherent THz beam and its transport to the experimental hutch.
Finally, the collimated beam is focused on the sample’s surface through a parabolic mirror (Figure 1)
sets at a distance of 5 cm.
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structure of the THz pulses, (c) photo of the sample holder and of the parabolic mirror used to focus 
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Knife-edge scanning measurements reveal the Gaussian profile of the beam at the focal point. 

The circular spot has a radius of ~130 µm, close to the diffraction limit [31]. Actually, the time 
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repetition rate, the time structure composed by a sequence of 4 μs pulses is exploited. At the repetition 

Figure 1. (a) The spectrum of the FEL emission for an undulator gap of 37 mm, (b) layout and time
structure of the THz pulses, (c) photo of the sample holder and of the parabolic mirror used to focus
the radiation.

Knife-edge scanning measurements reveal the Gaussian profile of the beam at the focal point.
The circular spot has a radius of ~130 µm, close to the diffraction limit [31]. Actually, the time structure
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of the THz beam is related to the electron beam structure of the LINAC. By fixing the undulator
gap at 37 mm, the narrow-band THz emission is centered at ~4.3 THz. With a 5 Hz repetition rate,
the time structure composed by a sequence of 4 µs pulses is exploited. At the repetition rate of
27 MHz, each macro-pulse 20 ps long is composed of 108 micro-pulses. Figure 1a shows the typical
frequency dispersion of this THz-FEL in the 27 MHz mode, reaching ~3% bandwidth at the best
monochromaticity conditions.

As measured by the calibrated energy meter (Multipurpose Energy Max Sensor J-25MB-LE form
Coherent®) the FEL provides THz-pulse energy of 4 ± 0.1 mJ on the sample surface. Considering an
area with the size of the focus spot (130 µm Gaussian radius), the fluence of the pulse on the sample
surface is 12,7 J/cm2. At the focal point, a peak magnitude of 3.7 GV/m for the THz electric field has
been evaluated using the equation:

ETHz =
√

Z0 ITHz (1)

where the micro-pulse intensity ITHz is

ITHz =
WTHz

τ πr2 (2)

with WTHz the micro pulse energy, τ the micro-pulse time duration, and r the beam Gaussian
waist. In our experiment, irradiations have been carried out on 5 mm thick oxygen-free and high
thermal conductivity (OFHC) copper samples, polished down to a nominal roughness (rms) <5 nm.
Each irradiation, composed of 5000 pulses with the total fluence of 635 J/cm2, has been delivered in
~15 min. The visible damage on the copper surface has been evaluated with a combined optical and
chemical analysis. Images have been collected at different magnifications with a scanning electron
microscope “Nanoimages MINI-SEM SNE-3200M”, while Raman maps have been collected using the
JASCO N5100 Optical and Raman microscope.

3. Results and Discussions

The irradiations have been performed at different angles of incidence, rotating the copper sample
from the normal incidence position (0◦) up to 60◦. As shown in Figure 2a, the rotation axis of the
sample is perpendicular to the horizontal plane, i.e., normal to the polarization plane of the electric
field. During the irradiations, breakdowns phenomena occur in air near the sample surface (Figure 2b).
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Figure 2. (a) Layout of the experimental irradiation at the incidence angle θ. The linear polarized
radiation hits the copper surface oriented at the selected angle. (b) Image of a spark (bright spot) near
the bottom edge occurring on the copper surface irradiated at the incidence angle of 40◦.
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Figure 3 shows the optical images of the surface damage. In this figure, four optical images taken
at different angles after exposition with 5000 pulses are highlighted. At normal incidence, no damage
is detectable, while increasing the incidence angle a pattern with evident surface changes appears.
This suggests that different phenomena may occur during the irradiation. At this frequency regime,
during irradiation, both thermo-mechanical stress and strains are expected to contribute to the surface
damage [9]. Using the Raman microscope, we were able to analyze and compare different areas in the
damaged regions (see Figure 4). The measurements were performed with a red laser (738 nm) using a
spot of ~1 µm (100×magnification).
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Figure 4. (a) 5×magnified image of the damaged region irradiated at 40◦ after 5000 shots. A central
opaque area, an intermediate lighter area, and a dark corona can be recognized. The two squares
highlight the 20×magnified region of the corona (black, panel b) and the central area (red, panel d).
The brown corona is due to the oxidation of the copper surface (100×magnification in panel c). A 100×
magnification of the central area is highlighted in (panel e). (f) Comparison of the Raman spectra
collected in the two magnified areas showing the copper oxides vibrational peaks (mainly CuO and
Cu4O3) in the corona and a small presence of oxides in the central region.

Looking at Figure 4a, two sub-regions in the damaged area can be distinguished: the center,
where the THz electric field reaches its maximum intensity and the corona, with an outer diameter
of ~500 µm. The analysis of the optical images and the comparison of the different Raman spectra
(Figure 4f) suggest that the surface in the corona region contains copper oxides (mainly Cu4O3 and
CuO) [32,33], while the center is almost metallic with a weak contribution of copper oxides [32].

In experiments where coherent radiation interacts with a solid system, the fluence shows a
threshold value for the generation of plasma on the surface that depends on the wavelength [34].
The measured plasma generation threshold for copper is <2 J/cm2 at 1 µm, decreasing at longer
wavelengths [34]. At this fluence, the irradiation is expected to produce plasma plumes, possibly
containing electrons, ions, atoms, molecules, and micro-sized particles, whose dynamics contribute to
shaping the damaged pattern [34]. The lack of copper oxide in the central region could be associated
with the ablation mechanism induced by the intense THz radiation beam, which continuously removes,
at each pulse, part of the oxide layer present on top of the surface.

The spatial distribution of copper oxides is shown in Figure 5. This map describes the copper
surface irradiated at 40◦ and has been obtained collecting a grid of 200 × 200 Raman spectra with a
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5 µm spot. It allows to reconstruct the spatial distribution of the copper oxides by integrating, in each
of the 40000 Raman spectra, the region from 350 to 800 cm−1, which is associated with CuO and
Cu2O [32]. As already shown in Figure 4f, the corona has the highest concentration of oxides, while in
the central region, they are negligible. A further investigation of the pattern has been obtained through
SEM microscopy. Three magnified SEM images of the copper surface are shown in Figure 6 at 40◦

of incidence. The image on the left shows the two regions: The corona well separated by the dark
external copper surface.
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Figure 5. Raman map of the copper oxide contributions related to the copper surface exposed at 40◦,
and obtained integrating the range 350–800 cm−1. The color bar on the right gives the intensity of the
integrated Raman signal.
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Figure 6. Comparison of SEM images of the irradiated copper surface at the angle of incidence of 40◦.
By increasing the magnification (from left to right), it is possible to recognize in the central area (a),
where the highest damage occurs, the presence of hundreds of copper tips (b). Their presence (see
magnified tips in (c)) suggests that in this region, it is possible to reach temperatures comparable to
higher than the Cu melting point (~1085 ◦C).

The most intriguing result of the irradiation we performed with ISIR appears in the center of the
pattern, where small structures emerge. Their shape and appearance are highlighted in panel c of
Figure 6. In order to generate such microstructures, the central area should be exposed to extreme heat
with a possible melting of the upper layers in order to form upward pillars. Similar processes might
also emerge from surface instabilities on a rigid substrate, leading to self-organization phenomena
and the formation of well-organized nano-micro patterns such as the pillar-like structures shown in
Figure 6c [35].

Irradiations have also been performed with a lower number of pulses, resulting in different
damaging behaviors. For instance, with an irradiation of 500 pulses no damage could have been
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resolved on the copper surface at all incidence angles. The result suggests the occurrence of a cumulative
thermal effect, most likely a positive feedback process where the growing temperature modifies the
absorption efficiency of the surface. Therefore, the rise of the surface temperature is expected for longer
exposition times with stronger damage. A similar build-up effect has also been observed in the optical
range, as suggested in [36], where a similar behavior of the copper reflectance has been observed when
copper was irradiated by multiple intense optical pulses.

Regarding the observed angular dependence, a similar process has been described in the optical
range by Miyasaka et al. [37]. Increasing the incidence angle, he revealed for a p-polarized high-intensity
pulsed laser, a further increase in the absorbance of the copper surface. This latter phenomenon can be
modeled through the well-known complex Fresnel equations. The reflected incident radiation with
p-polarized light has to take into account the complex form:

Rp(θ) =


−ñCu

2 cosθi −

√
ñCu2 − sin2 θi

ñCu2 cosθi +

√
ñCu2 − sin2 θi


2

ñCu = nCu + ikCu (3)

where ñCu is the complex copper refractive index at ~4 THz [38] and θi is the incidence angle. From this
equation, we may obtain the absorbed fluence Fabs by the copper surface as a function of the incidence
angle. The incidence fluence can be written as

F =
Emicro

A
; A =

πr2

cosθi
(4)

where Emicro is the energy of a single micro-pulse and A the angle-dependent irradiated area. Indeed,
when the beam hits the surface, the irradiated area widens with the angle θi > 0. As a consequence, the
fluence absorbed by the surface is

Fabs =
(
1−Rp(θ)

)
·F =

(
1−Rp(θ)

)
·
Emicro cosθi

πr2 (5)

which gives an increase in the temperature:

∆T =
Fabs
ρCδe f f

(6)

where ρ = 8.96 g/cm3 is the copper density at room temperature (RT), C = 0.385 J/g ◦C the specific heat
capacity at RT and δθ = δ0◦ · cosθi is the penetration depth of the radiation in bulk copper. The latter
depends on the angle [39], and δ0◦~40 nm is the penetration depth at normal incidence in this frequency
domain [40]. We obtain the equation:

∆Tθ =
(
1−Rp(θ)

)
·

Emicro

πr2ρCδ0◦
=

(
1−Rp(θ)

)
·∆T0◦ (7)

The non-homogenous distribution of the radiation inside the spot determines a gradient in the
temperature distribution going from the center to the corona region. Figure 7a shows the angular
dependence of the absorbed fluence Fabs (Equation (5), black), the penetration depth (red), and the
temperature increase at the center of the spot (Equation (7), blue). Figure 7b describes the ∆T vs. the
radial distance from the center, for different incidence angles (Equation (7)). If we consider the center
of the spot, at angles higher than 20◦, the temperature increases more than the melting point of copper
(~1085 ◦C), while at 60◦ the temperature increases above 1800 ◦C.
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4. Conclusions

In this work, we showed for the first time the occurrence of an angular dependent reproducible
damage induced by THz multiple high-intensity pulses on metallic copper surfaces. We showed that
the damage increases for increasing incidence angles with multiple shots (>103) and the fluence of
12.7 J/cm2 per pulse. We estimated the increase of the temperature of the copper surface with a simple
model that reasonably matches the experimental results. It suggests that the increase in absorption
at high incidence angles may cause damage and oxidation. The model showed that for incidence
angles >20◦, the final temperature can be higher than the melting temperature of copper. The observed
damage is in agreement with previous reports in the optical frequency range, described in terms of
higher absorbance, increased angle of incidence [36], and multiple shots irradiation [37].

The phenomenology behind the damaging effects can be explained in terms of a fast local
temperature increase. It may induce ablation and copper melting on the surface. However, such a
description does not consider electric-related effects, e.g., discharges and/or breakdowns occurring
in air due to pulses (Figure 2). The breakdown phenomenon occurring at the copper surface is
due to the strong electric field applied (estimated ~4 GV/m) in the central region. Actually, pillars
formed in the central region could be related to surface instabilities due to both thermal and electric
phenomena. In fact, tips could be generated by the coalescence of the melted copper in the central
region, or generated during the strong electric field, during which tips act as point-like structures
capable of enhancing local electric fields [41].

This work also points out the possibility to use multiple fast irradiations and high-fluence THz
radiation to test in a controlled way the damage induced to small areas of a metallic surface by strong
electric fields, i.e., in the range of 4 GV/m. The results also point out the need to characterize better the
observed damage patterns and their dynamics following multiple irradiation procedures. This original
approach represents an innovative method to test in a reliable and controlled way the damage induced
on a smooth surface. The method offers many potential applications in different technologies and
studies, e.g., the construction of accelerating cavities and RF devices.
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