360 research outputs found

    Role of Mesenchymal Stem Cells in Counteracting Oxidative Stress\u2014Related Neurodegeneration

    Get PDF
    Neurodegenerative diseases include a variety of pathologies such as Alzheimer\u2019s disease, Parkinson\u2019s disease, Huntington\u2019s disease, amyotrophic lateral sclerosis, and so forth, which share many common characteristics such as oxidative stress, glycation, abnormal protein deposition, inflammation, and progressive neuronal loss. The last century has witnessed significant research to identify mechanisms and risk factors contributing to the complex etiopathogenesis of neurodegenerative diseases, such as genetic, vascular/metabolic, and lifestyle-related factors, which often co-occur and interact with each other. Apart from several environmental or genetic factors, in recent years, much evidence hints that impairment in redox homeostasis is a common mechanism in different neurological diseases. However, from a pharmacological perspective, oxidative stress is a difficult target, and antioxidants, the only strategy used so far, have been ineffective or even provoked side effects. In this review, we report an analysis of the recent literature on the role of oxidative stress in Alzheimer\u2019s and Parkinson\u2019s diseases as well as in amyotrophic lateral sclerosis, retinal ganglion cells, and ataxia. Moreover, the contribution of stem cells has been widely explored, looking at their potential in neuronal differentiation and reporting findings on their application in fighting oxidative stress in different neurodegenerative diseases. In particular, the exposure to mesenchymal stem cells or their secretome can be considered as a promising therapeutic strategy to enhance antioxidant capacity and neurotrophin expression while inhibiting pro-inflammatory cytokine secretion, which are common aspects of neurodegenerative pathologies. Further studies are needed to identify a tailored approach for each neurodegenerative disease in order to design more effective stem cell therapeutic strategies to prevent a broad range of neurodegenerative disorder

    Outlining the mission profile of agricultural tractors through CAN-BUS data analytics

    Get PDF
    Tractor manufacturers need to know how farmers use their agricultural tractors for an optimal machine design. Tractor usage is not easy to assess due to the large variability of field operations. However, modern tractors embed sensors integrated into the CAN-BUS network and their data is accessible through the ISO 11,783 protocol. Even though this technology has been available for a long time, the use of CAN-BUS data for outlining the tractor usage is still limited, because a proper post-processing method is lacking. This study aimed to present a novel classification scheme of CAN-BUS data which permits to outline the tractor usage. On a tractor, a CAN-BUS data logger and a GNSS receiver were installed, and real-world data were recorded for 579 h. Thus, data was obtained in the most realistic condition. Tractor positions were classified using GIS layers while operating conditions were classified depending on the usage of the tractor's subsystems. The method highlights that showed to be able to detect the 97% of the logged data and that the tractor operated on the field in working, on idle, and moving duties for 65%, 18% and 16% of the time, respectively. The method allows a far more precise outline of tractor usage opening opportunities to obtain large benefits from massively collected CAN-BUS data

    Towards a regional ocean forecasting system for the IBI (Iberia-Biscay-Ireland area): developments and improvements within the ECOOP project framework

    Get PDF
    The regional ocean operational system remains a key element in downscaling from large scale (global or basin scale) systems to coastal ones. It enables the transition between systems in which the resolution and the resolved physics are quite different. Indeed, coastal applications need a system to predict local high frequency events (inferior to the day) such as storm surges, while deep sea applications need a system to predict large scale lower frequency ocean features. In the framework of the ECOOP project, a regional system for the Iberia-Biscay-Ireland area has been upgraded from an existing V0 version to a V2. This paper focuses on the improvements from the V1 system, for which the physics are close to a large scale basin system, to the V2 for which the physics are more adapted to shelf and coastal issues. Strong developments such as higher regional physics resolution in the NEMO Ocean General Circulation Model for tides, non linear free surface and adapted vertical mixing schemes among others have been implemented in the V2 version. Thus, regional thermal fronts due to tidal mixing now appear in the latest version solution and are quite well positioned. Moreover, simulation of the stratification in shelf areas is also improved in the V2

    Novel targets of sulforaphane in primary cardiomyocytes identified by proteomic analysis.

    Get PDF
    Cardiovascular diseases represent the main cause of mortality in the industrialized world and the identification of effective preventive strategies is of fundamental importance. Sulforaphane, an isothiocyanate from cruciferous vegetables, has been shown to up-regulate phase II enzymes in cardiomyocytes and counteract oxidative stress-induced apoptosis. Aim of the present study was the identification and characterization of novel sulforaphane targets in cardiomyocytes applying a proteomic approach. Two-dimensional gel electrophoresis and mass spectrometry were used to generate protein profiles of primary neonatal rat cardiomyocytes treated and untreated with 5 \ub5M sulforaphane for 1-48 h. According to image analysis, 64 protein spots were found as differentially expressed and their functional correlations were investigated using the MetaCore program. We mainly focused on 3 proteins: macrophage migration inhibitory factor (MIF), CLP36 or Elfin, and glyoxalase 1, due to their possible involvement in cardioprotection. Validation of the time-dependent differential expression of these proteins was performed by western blotting. In particular, to gain insight into the cardioprotective role of the modulation of glyoxalase 1 by sulforaphane, further experiments were performed using methylglyoxal to mimic glycative stress. Sulforaphane was able to counteract methylglyoxal-induced apoptosis, ROS production, and glycative stress, likely through glyoxalase 1 up-regulation. In this study, we reported for the first time new molecular targets of sulforaphane, such as MIF, CLP36 and glyoxalase 1. In particular, we gave new insights into the anti-glycative role of sulforaphane in cardiomyocytes, confirming its pleiotropic behavior in counteracting cardiovascular disease

    Autophagic degradation of farnesylated prelamin A as a therapeutic approach to lamin-linked progeria

    Get PDF
    Farnesylated prelamin A is a processing intermediate produced in the lamin A maturation pathway. Accumulation of a truncated farnesylated prelamin A form, called progerin, is a hallmark of the severe premature ageing syndrome, Hutchinson-Gilford progeria. Progerin elicits toxic effects in cells, leading to chromatin damage and cellular senescence and ultimately causes skin and endothelial defects, bone resorption, lipodystrophy and accelerated ageing. Knowledge of the mechanism underlying prelamin A turnover is critical for the development of clinically effective protein inhibitors that can avoid accumulation to toxic levels without impairing lamin A/C expression, which is essential for normal biological functions. Little is known about specific molecules that may target farnesylated prelamin A to elicit protein degradation. Here, we report the discovery of rapamycin as a novel inhibitor of progerin, which dramatically and selectively decreases protein levels through a mechanism involving autophagic degradation. Rapamycin treatment of progeria cells lowers progerin, as well as wild-type prelamin A levels, and rescues the chromatin phenotype of cultured fibroblasts, including histone methylation status and BAF and LAP2α distribution patterns. Importantly, rapamycin treatment does not affect lamin C protein levels, but increases the relative expression of the prelamin A endoprotease ZMPSTE24. Thus, rapamycin, an antibiotic belonging to the class of macrolides, previously found to increase longevity in mouse models, can serve as a therapeutic tool, to eliminate progerin, avoid farnesylated prelamin A accumulation, and restore chromatin dynamics in progeroid laminopathies

    Different prelamin A forms accumulate in human fibroblasts: a study in experimental models and progeria

    Get PDF
    Lamin A is a component of the nuclear lamina mutated in a group of human inherited disorders known as laminopathies. Among laminopathies, progeroid syndromes and lipodystrophies feature accumulation of prelamin A, the precursor protein which, in normal cells, undergoes a multi-step processing to yield mature lamin A. It is of utmost importance to characterize the prelamin A form accumulated in each laminopathy, since existing evidence shows that drugs acting on protein processing can improve some pathological aspects. We report that two antibodies raised against differently modified prelamin A peptides show a clear specificity to full-length prelamin A or carboxymethylated farnesylated prelamin A, respectively. Using these antibodies, we demonstrated that inhibition of the prelamin A endoprotease ZMPSTE24 mostly elicits accumulation of full-length prelamin A in its farnesylated form, while loss of the prelamin A cleavage site causes accumulation of carboxymethylated prelamin A in progeria cells. These results suggest a major role of ZMPSTE24 in the first prelamin A cleavage step

    Characteristics of Nondisabled Older Patients Developing New Disability Associated with Medical Illnesses and Hospitalization

    Get PDF
    OBJECTIVE: To identify demographic, clinical, and biological characteristics of older nondisabled patients who develop new disability in basic activities of daily living (BADL) during medical illnesses requiring hospitalization. DESIGN: Longitudinal observational study. SETTING: Geriatric and Internal Medicine acute care units. PARTICIPANTS: Data are from 1,686 patients aged 65 and older who independent in BADL 2 weeks before hospital admission, enrolled in the 1998 survey of the Italian Group of Pharmacoepidemiology in the Elderly Study. MEASUREMENTS: Study outcome was new BADL disability at time of hospital discharge. Sociodemographic, functional status, and clinical characteristics were collected at hospital admission; acute and chronic conditions were classified according to the International Classification of Disease, ninth revision; fasting blood samples were obtained and processed with standard methods. RESULTS: At the time of hospital discharge 113 patients (6.7%) presented new BADL disability. Functional decline was strongly related to patients’ age and preadmission instrumental activities of daily living status. In a multivariate analysis, older age, nursing home residency, low body mass index, elevated erythrocyte sedimentation rate, acute stroke, high level of comorbidity expressed as Cumulative Illness Rating Scale score, polypharmacotherapy, cognitive decline, and history of fall in the previous year were independent and significant predictors of BADL disability. CONCLUSION: Several factors might contribute to loss of physical independence in hospitalized older persons. Preexisting conditions associated with the frailty syndrome, including physical and cognitive function, comorbidity, body composition, and inflammatory markers, characterize patients at high risk of functional decline

    Rescue of heterochromatin organization in Hutchinson-Gilford progeria by drug treatment

    Get PDF
    Hutchinson-Gilford progeria (HGPS) is a premature aging syndrome associated with LMNA mutations. Progeria cells bearing the G608G LMNA mutation are characterized by accumulation of a mutated lamin A precursor (progerin), nuclear dysmorphism and chromatin disorganization. In cultured HGPS fibroblasts, we found worsening of the cellular phenotype with patient age, mainly consisting of increased nuclear-shape abnormalities, progerin accumulation and heterochromatin loss. Moreover, transcript distribution was altered in HGPS nuclei, as determined by different techniques. In the attempt to improve the cellular phenotype, we applied treatment with drugs either affecting protein farnesylation or chromatin arrangement. Our results show that the combined treatment with mevinolin and the histone deacetylase inhibitor trichostatin A dramatically lowers progerin levels, leading to rescue of heterochromatin organization and reorganization of transcripts in HGPS fibroblasts. These results suggest that morpho-functional defects of HGPS nuclei are directly related to progerin accumulation and can be rectified by drug treatment
    • …
    corecore