14 research outputs found

    P2_5 Jovian Gravitational Perturbations on Earth's Orbit

    Get PDF
    In a hypothetical situations in which the solar system contains varied masses of Jupiter, the orbit of the Earth may fall subject to considerable gravitational perturbations. With the aid of the Newtonian gravity simulator, Universe SandboxTM, the effects of these perturbations can be observed .The orbit is found alter by an approximate 30x106 km before being ejected from the solar system, at Jovian mass of 0.7 Mʘ

    Exploring compact binary merger host galaxies and environments with zELDA

    Get PDF
    Compact binaries such as double neutron stars or a neutron star paired with a black hole, are strong sources of gravitational waves during coalescence and also the likely progenitors of various electromagnetic phenomena, notably short-duration gamma-ray bursts (SGRBs), and kilonovae. In this work, we generate populations of synthetic binaries and place them in galaxies from the large-scale hydrodynamical galaxy evolution simulation, eagle. With our zELDA code, binaries are seeded in proportion to star formation rate, and we follow their evolution to merger using both the bpass and cosmic binary stellar evolution codes. We track their dynamical evolution within their host galaxy potential, to estimate the galactocentric distance at the time of the merger. Finally, we apply observational selection criteria to allow comparison of this model population with the legacy sample of SGRBs. We find a reasonable agreement with the redshift distribution (peaking at 0.5 26)

    Exploring compact binary merger host galaxies and environments with <code>zELDA</code>

    Get PDF
    Compact binaries such as double neutron stars or a neutron star paired with a black hole, are strong sources of gravitational waves during coalescence and also the likely progenitors of various electromagnetic phenomena, notably short-duration gamma-ray bursts (SGRBs), and kilonovae. In this work, we generate populations of synthetic binaries and place them in galaxies from the large-scale hydrodynamical galaxy evolution simulation, EAGLE. With our zELDA code, binaries are seeded in proportion to star formation rate, and we follow their evolution to merger using both the BPASS and COSMIC binary stellar evolution codes. We track their dynamical evolution within their host galaxy potential, to estimate the galactocentric distance at the time of the merger. Finally, we apply observational selection criteria to allow comparison of this model population with the legacy sample of SGRBs. We find a reasonable agreement with the redshift distribution (peaking at 0.5 26)

    A long-duration gamma-ray burst of dynamical origin from the nucleus of an ancient galaxy

    Get PDF
    The majority of long-duration (>2 s) gamma-ray bursts (GRBs) arise from the collapse of massive stars, with a small proportion created from the merger of compact objects. Most of these systems form via standard stellar evolution pathways. However, a fraction of GRBs may result from dynamical interactions in dense environments. These channels could also contribute substantially to the samples of compact object mergers detected as gravitational wave sources. Here we report the case of GRB 191019A, a long GRB (a duration of T 90 = 64.4 ± 4.5 s), which we pinpoint close (⪅100 pc projected) to the nucleus of an ancient (>1 Gyr old) host galaxy at z = 0.248. The lack of evidence for star formation and deep limits on any supernova emission disfavour a massive star origin. The most likely route for progenitor formation is via dynamical interactions in the dense nucleus of the host. The progenitor, in this case, could be a compact object merger. These may form in dense nuclear clusters or originate in a gaseous disc around the supermassive black hole. Identifying, to the best of our knowledge, a first example of a dynamically produced GRB demonstrates the role that such bursts may have in probing dense environments and constraining dynamical fractions in gravitational wave populations

    LOFAR early-time search for coherent radio emission from short GRB 181123B

    No full text
    The mergers of two neutron stars are typically accompanied by broad-band electromagnetic emission from either a relativistic jet or a kilonova. It has also been long predicted that coherent radio emission will occur during the merger phase or from a newly formed neutron star remnant; however, this emission has not been seen to date. This paper presents the deepest limits for this emission from a neutron star merger, following triggered LOFAR observations of the short gamma-ray burst 181123B, starting 4.4 min after the GRB occurred. During the X-ray plateau phase, a signature of ongoing energy injection, we detect no radio emission to a 3σ limit of 153 mJy at 144 MHz (image integration time of 136 s), which is significantly fainter than the predicted emission from a standard neutron star. At a redshift of 1.8, this corresponds to a luminosity of 2.5 × 1044 erg s-1. Snapshot images were made of the radio observation on a range of time-scales, targeting short-duration radio flashes similar to fast radio bursts. No emission was detected in the snapshot images at the location of GRB 181123B enabling constraints to be placed on the prompt coherent radio emission model and emission predicted to occur when a neutron star collapses to form a black hole. At the putative host redshift of 1.8 for GRB 181123B, the non-detection of the prompt radio emission is two orders of magnitude lower than expected for magnetic reconnection models for prompt GRB emission and no magnetar emission is expected

    LOFAR early-time search for coherent radio emission from short GRB 181123B

    Get PDF
    The mergers of two neutron stars are typically accompanied by broad-band electromagnetic emission from either a relativistic jet or a kilonova. It has also been long predicted that coherent radio emission will occur during the merger phase or from a newly formed neutron star remnant; however, this emission has not been seen to date. This paper presents the deepest limits for this emission from a neutron star merger, following triggered LOFAR observations of the short gamma-ray burst 181123B, starting 4.4 min after the GRB occurred. During the X-ray plateau phase, a signature of ongoing energy injection, we detect no radio emission to a 3σ limit of 153 mJy at 144 MHz (image integration time of 136 s), which is significantly fainter than the predicted emission from a standard neutron star. At a redshift of 1.8, this corresponds to a luminosity of 2.5 × 1044 erg s−1. Snapshot images were made of the radio observation on a range of time-scales, targeting short-duration radio flashes similar to fast radio bursts. No emission was detected in the snapshot images at the location of GRB 181123B enabling constraints to be placed on the prompt coherent radio emission model and emission predicted to occur when a neutron star collapses to form a black hole. At the putative host redshift of 1.8 for GRB 181123B, the non-detection of the prompt radio emission is two orders of magnitude lower than expected for magnetic reconnection models for prompt GRB emission and no magnetar emission is expected

    Gamma ray burst studies with THESEUS

    No full text
    Gamma-ray Bursts (GRBs) are the most powerful transients in the Universe, over–shining for a few seconds all other γ-ray sky sources. Their emission is produced within narrowly collimated relativistic jets launched after the core–collapse of massive stars or the merger of compact binaries. THESEUS will open a new window for the use of GRBs as cosmological tools by securing a statistically significant sample of high-z GRBs, as well as by providing a large number of GRBs at low–intermediate redshifts extending the current samples to low luminosities. The wide energy band and unprecedented sensitivity of the Soft X-ray Imager (SXI) and X-Gamma rays Imaging Spectrometer (XGIS) instruments provide us a new route to unveil the nature of the prompt emission. For the first time, a full characterisation of the prompt emission spectrum from 0.3 keV to 10 MeV with unprecedented large count statistics will be possible revealing the signatures of synchrotron emission. SXI spectra, extending down to 0.3 keV, will constrain the local metal absorption and, for the brightest events, the progenitors’ ejecta composition. Investigation of the nature of the internal energy dissipation mechanisms will be obtained through the systematic study with XGIS of the sub-second variability unexplored so far over such a wide energy range. THESEUS will follow the spectral evolution of the prompt emission down to the soft X–ray band during the early steep decay and through the plateau phase with the unique ability of extending above 10 keV the spectral study of these early afterglow emission phases

    Gamma ray burst studies with THESEUS

    Get PDF
    International audienceGamma-ray Bursts (GRBs) are the most powerful transients in the Universe, over–shining for a few seconds all other γ-ray sky sources. Their emission is produced within narrowly collimated relativistic jets launched after the core–collapse of massive stars or the merger of compact binaries. THESEUS will open a new window for the use of GRBs as cosmological tools by securing a statistically significant sample of high-z GRBs, as well as by providing a large number of GRBs at low–intermediate redshifts extending the current samples to low luminosities. The wide energy band and unprecedented sensitivity of the Soft X-ray Imager (SXI) and X-Gamma rays Imaging Spectrometer (XGIS) instruments provide us a new route to unveil the nature of the prompt emission. For the first time, a full characterisation of the prompt emission spectrum from 0.3 keV to 10 MeV with unprecedented large count statistics will be possible revealing the signatures of synchrotron emission. SXI spectra, extending down to 0.3 keV, will constrain the local metal absorption and, for the brightest events, the progenitors’ ejecta composition. Investigation of the nature of the internal energy dissipation mechanisms will be obtained through the systematic study with XGIS of the sub-second variability unexplored so far over such a wide energy range. THESEUS will follow the spectral evolution of the prompt emission down to the soft X–ray band during the early steep decay and through the plateau phase with the unique ability of extending above 10 keV the spectral study of these early afterglow emission phases
    corecore