20,115 research outputs found
Secular Evolution of Hierarchical Planetary Systems
(Abridged) We investigate the dynamical evolution of coplanar hierarchical
two-planet systems where the ratio of the orbital semimajor axes alpha=a_1/a_2
is small. The orbital parameters obtained from a multiple Kepler fit to the
radial velocity variations of a star are best interpreted as Jacobi coordinates
and Jacobi coordinates should be used in any analyses of hierarchical planetary
systems. An approximate theory that can be applied to coplanar hierarchical
two-planet systems with a wide range of masses m_j and orbital eccentricities
e_j is the octupole-level secular perturbation theory (OSPT). The OSPT shows
that if the ratio of the maximum orbital angular momenta, lambda \approx
(m_1/m_2) alpha^{1/2}, for given a_j is approximately equal to a critical value
lambda_{crit}, then libration of the difference in the longitudes of periapse,
w_1-w_2, about either 0 or 180 deg. is almost certain, with possibly large
amplitude variations of both e_j. We establish that the OSPT is highly accurate
for systems with alpha<0.1 and reasonably accurate even for systems with alpha
as large as 1/3, provided that alpha is not too close to a significant
mean-motion commensurability or above the stability boundary. The HD 168443
system is not in a secular resonance and its w_1-w_2 circulates. The HD 12661
system is the first extrasolar planetary system found to have w_1-w_2 librating
about 180 deg. The libration of w_1-w_2 and the large-amplitude variations of
both e_j in the HD 12661 system are consistent with the analytic results on
systems with lambda \approx lambda_{crit}. The HD 12661 system with the best-
fit orbital parameters and sin i = 1 is affected by the close proximity to the
11:2 commensurability, but small changes in the outer orbital period can result
in configurations that are not affected by mean-motion commensurabilities.Comment: 32 pages, including 8 figures; uses AASTeX v5.0; accepted for
publication in Ap
Current-induced synchronized switching of magnetization
We investigate current-induced magnetization switching for a multilayer
structure that allows a reduced switching current while maintaining high
thermal stability of the magnetization. The structure consists of a
perpendicular polarizer, a perpendicular free-layer, and an additional
free-layer having in-plane magnetization. When the current runs perpendicular
to the structure, the in-plane free-layer undergoes a precession and supplies
an internal rf field to the perpendicular free-layer, resulting in a reduced
switching current for one current polarity. For the other polarity, the
in-plane free-layer almost saturates perpendicular to the plane and acts as
another perpendicular polarizer, which also reduces the switching current.Comment: 18 pages, 4 figure
Quantum discord amplification induced by quantum phase transition via a cavity-Bose-Einstein-condensate system
We propose a theoretical scheme to realize a sensitive amplification of
quantum discord (QD) between two atomic qubits via a cavity-Bose-Einstein
condensate (BEC) system which was used to firstly realize the Dicke quantum
phase transition (QPT) [Nature 464, 1301 (2010)]. It is shown that the
influence of the cavity-BEC system upon the two qubits is equivalent to a phase
decoherence environment. It is found that QPT in the cavity-BEC system is the
physical mechanism of the sensitive QD amplification.Comment: 5 pages, 3 figure
Complete Tidal Evolution of Pluto-Charon
Both Pluto and its satellite Charon have rotation rates synchronous with
their orbital mean motion. This is the theoretical end point of tidal evolution
where transfer of angular momentum has ceased. Here we follow Pluto's tidal
evolution from an initial state having the current total angular momentum of
the system but with Charon in an eccentric orbit with semimajor axis (where is the radius of Pluto), consistent with its impact origin.
Two tidal models are used, where the tidal dissipation function
1/frequency and constant, where details of the evolution are strongly
model dependent. The inclusion of the gravitational harmonic coefficient
of both bodies in the analysis allows smooth, self consistent
evolution to the dual synchronous state, whereas its omission frustrates
successful evolution in some cases. The zonal harmonic can also be
included, but does not cause a significant effect on the overall evolution. The
ratio of dissipation in Charon to that in Pluto controls the behavior of the
orbital eccentricity, where a judicious choice leads to a nearly constant
eccentricity until the final approach to dual synchronous rotation. The tidal
models are complete in the sense that every nuance of tidal evolution is
realized while conserving total angular momentum - including temporary capture
into spin-orbit resonances as Charon's spin decreases and damped librations
about the same.Comment: 36 pages, including 18 figures; accepted for publication in Icaru
A Primordial Origin of the Laplace Relation Among the Galilean Satellites
Understanding the origin of the orbital resonances of the Galilean satellites
of Jupiter will constrain the longevity of the extensive volcanism on Io, may
explain a liquid ocean on Europa, and may guide studies of the dissipative
properties of stars and Jupiter-like planets. The differential migration of the
newly formed Galilean satellites due to interactions with a circumjovian disk
can lead to the primordial formation of the Laplace relation n_1 - 3 n_2 + 2
n_3 = 0, where the n_i are the mean orbital angular velocities of Io, Europa,
and Ganymede, respectively. This contrasts with the formation of the resonances
by differential expansion of the orbits from tidal torques from Jupiter.Comment: 13 pages, including 4 figures; uses scicite.st
Laser spectroscopic studies of the pure rotational U_0(0) and W_0(0) transitions of solid parahydrogen
High resolution spectrum of multipole-induced transitions of solid parahydrogen was recorded using diode and difference frequency laser spectroscopy. The J=4<--0 pure rotational U_0(0) transition observed in the diode spectrum agrees well in frequency with the value reported by Balasubramanian et al. [Phys. Rev. Lett. 47, 1277 (1981)] but we observed a spectral width smaller by about a factor of 4. The J=6<--0 W_0(0) transition was observed to be exceedingly sharp, with a width of ~70 MHz, using a difference frequency spectrometer with tone-burst modulation. This transition is composed of three components with varying relative intensity depending upon the direction of polarization of laser radiation. These components were interpreted as the splitting of the M levels in the J=6 state due to crystal field interactions. In addition, a new broad feature was found at 2452.4 cm^(−1) in the low resolution Fourier-transform infrared (FTIR) spectrum of solid hydrogen and was assigned to be the phonon branch W_R(0) transition of the W_0(0) line. The selection rules, crystal field splitting of J=4 and J=6 rotons, and the measured linewidth based on these observations are discussed
The analytical discussion on strong gravitaional lensing for a gravitational source with a global monopole
Here the gravitational lensing in strong field limit of a Schwarzschild black
hole with a solid deficit angle owing to global monopole within the context of
the gravity theory is investigated. We obtain the expressions of
deflection angle and time delay in the forms of elliptic integrals and discuss
the asymptotic behaviour of the elliptic integrals to find the explicit
formulae of angle and time difference in the strong field limit. We show that
the deflection angle and the time delay between multiple images are related not
only to the monopole but also to the correction by taking the
cosmological boundary into account. Some observables such as the minimum impact
parameter, the angular separation, the relative magnification and the compacted
angular position have been estimated as well. It is intriguing that the tiny
modification on the standard general relativity will make the remarkable
deviation on the angle and the time lag, offering a significant way to explore
some possible distinct signatures of the topological soliton and the correction
of the Einstein general relativity.Comment: 11 pages, 5 figures. arXiv admin note: text overlap with
arXiv:1004.342
- …
