184 research outputs found

    MIK2 is a candidate gene of the S-locus for sporophytic self-incompatibility in chicory (Cichorium intybus, Asteraceae)

    Get PDF
    The Cichorium genus offers a unique opportunity to study the sporophytic self-incompatibility (SSI) system, being composed of species characterized by highly efficient self-incompatibility (e.g., C. intybus) and complete self-compatibility (e.g., C. endivia). To this end, the chicory genome was used to map seven previously identified SSI locus-associated markers. The region containing the S-locus was therefore restricted to an similar to 4 M bp window on chromosome 5. Among the genes predicted in this region, MDIS1 INTERACTING RECEPTOR LIKE KINASE 2 (ciMIK2) was particularly promising as a candidate for SSI. Its ortholog in Arabidopsis (atMIK2) is involved in pollen-stigma recognition reactions, and its protein structure is similar to that of S-receptor kinase (SRK), a key component of the SSI system in the Brassica genus. The amplification and sequencing of MIK2 in chicory and endive accessions revealed two contrasting scenarios. In C. endivia, MIK2 was fully conserved even when comparing different botanical varieties (i.e., smooth and curly endive). In C. intybus, 387 polymorphic positions and 3 INDELs were identified when comparing accessions of different biotypes all belonging to the same botanical variety (i.e., radicchio). The polymorphism distribution throughout the gene was uneven, with hypervariable domains preferentially localized in the LRR-rich extracellular region, putatively identified as the receptor domain. The gene was hypothesized to be under positive selection, as the nonsynonymous mutations were more than double the synonymous ones (dN/dS = 2.17). An analogous situation was observed when analyzing the first 500 bp of the MIK2 promoter: no SNPs were observed among the endive samples, whereas 44 SNPs and 6 INDELs were detected among the chicory samples. Further analyses are needed to confirm the role of MIK2 in SSI and to demonstrate whether the 23 species-specific nonsynonymous SNPs in the CDS and/or the species-specific 10 bp-INDEL found in a CCAAT box region of the promoter are responsible for the contrasting sexual behaviors of chicory and endive

    Condensation properties of stress granules and processing bodies are compromised in Myotonic Dystrophy Type 1

    Get PDF
    RNA regulation in mammalian cells requires complex physical compartmentalisation, using structures thought to be formed by liquid-liquid phase separation. Disruption of these structures is implicated in numerous degenerative diseases. Myotonic dystrophy type 1 (DM1) is a multi-systemic trinucleotide repeat disorder resulting from an expansion of nucleotides CTG (CTGexp) in the DNA encoding DM1 protein kinase (DMPK). The cellular hallmark of DM1 is the formation of nuclear foci that contain expanded DMPK RNA (CUGexp) (with thymine instead of uracil). We report here the deregulation of stress granules (SGs) and processing bodies (P-bodies), two cytoplasmic structures key for mRNA regulation, in cell culture models of DM1. Alterations to the rates of formation and dispersal of SGs suggest an altered ability of cells to respond to stress associated with DM1, while changes to the structure and dynamics of SGs and P-bodies suggest that a widespread alteration to the biophysical properties of cellular structures is a consequence of the presence of CUGexp RNA.</p

    Clinical Applicability of Visible Light-Mediated Cross-linking for Structural Soft Tissue Reconstruction

    Get PDF
    Abstract Visible light‐mediated cross‐linking has utility for enhancing the structural capacity and shape fidelity of laboratory‐based polymers. With increased light penetration and cross‐linking speed, there is opportunity to extend future applications into clinical spheres. This study evaluated the utility of a ruthenium/sodium persulfate photocross‐linking system for increasing structural control in heterogeneous living tissues as an example, focusing on unmodified patient‐derived lipoaspirate for soft tissue reconstruction. Freshly‐isolated tissue is photocross‐linked, then the molar abundance of dityrosine bonds is measured using liquid chromatography tandem mass spectrometry and the resulting structural integrity assessed. The cell function and tissue survival of photocross‐linked grafts is evaluated ex vivo and in vivo, with tissue integration and vascularization assessed using histology and microcomputed tomography. The photocross‐linking strategy is tailorable, allowing progressive increases in the structural fidelity of lipoaspirate, as measured by a stepwise reduction in fiber diameter, increased graft porosity and reduced variation in graft resorption. There is an increase in dityrosine bond formation with increasing photoinitiator concentration, and tissue homeostasis is achieved ex vivo, with vascular cell infiltration and vessel formation in vivo. These data demonstrate the capability and applicability of photocrosslinking strategies for improving structural control in clinically‐relevant settings, potentially achieving more desirable patient outcomes using minimal manipulation in surgical procedures

    Influence of silver precursors on growth of metallic nanoparticles in heavy metal oxide glasses

    Get PDF
    In this work we report a systematic study on the influence of the chemical nature of silver precursors on the formation of glass-ceramics from oxide glasses. Thermal, structural and optical properties were analyzed as a function of the glass composition. Controlled crystallization was achieved by thermal treatment of the samples above glass transition. The influence of time of treatment on both nanoparticle growth and optical properties of the samples was studied by transmission electron microscopy and UV-Vis spectroscopy, respectively. Results showed that only glasses containing AgCl and AgNO3 led to glass-ceramics growth after thermal treatment.CNPqCAPESFAPESP/CEPI

    Preventive research of the state of posture and the anatomical structure of the pelvis in female students of USMU

    Get PDF
    The purpose of the study is to assess the state of posture and anatomical design of the pelvis in 1st-year students of USMU, to give recommendations for the prevention and correction of their disorders.Цель исследования- оценить состояние осанки и анатомической конструкции таза у студенток 1 курса УГМУ, дать рекомендации по предотвращению и коррекции их нарушений
    corecore