219 research outputs found

    Water Collection and Distribution Systems in the Palermo Plain During the Middle Ages

    Get PDF
    It has been said that Palermo is short of available water. However, nothing could be more wrong. Well-documented Arab sources and narrative chronicles reported an abundance of groundwater resources in Palermo Plain since the Middle Ages. The scarcity of sources and surface water in the Palermo Plain, compared to the groundwater abundance, led the inhabitants to use groundwater both for irrigation and domestic usage through a complex and sustainable hydraulic system. Vertical and horizontal (qanāts) wells, conveyed water towards gardens and public fountains making the Arabic Bal’harm (Palermo) a flourishing town. When visitors walk through the streets of Palermo’s historical center, among Arab ruins and Baroque architecture, they hardly imagine that there is a wide and varied cultural heritage of underground cavities hidden in the basements where water flows in intricate networks fed from a numerous springs. Only in recent years was a part of this system brought to light. Moreover, the city still has a wide and fascinating water distribution system consisting of irrigation basin (gebbie), ingenious hydraulic machines named senie, and distribution chessboard of irrigation (saje) and drinking water (catusi) canals. The medieval water collection and distribution systems and their various components in the Palermo Plain are reviewed together with the influence of the Arab water management on environment

    Analysis of dynamic mechanical response in torsion

    No full text
    We investigate the dynamic response of industrial rubbers (styrene-butadiene random copolymers, SBR) in torsion and compare against common small amplitude oscillatory shear measurements by using a torsion rectangular fixture, a modified torsion cylindrical fixture, and a conventional parallel plate fixture, respectively, in two different rheometers (ARES 2kFRTN1 from TA Instruments, USA and MCR 702 from Anton Paar-Physica, Austria). The effects of specimen geometry (length-to-width aspect ratio) on storage modulus and level of clamping are investigated. For cylindrical specimens undergoing torsional deformation, we find that geometry and clamping barely affect the shear moduli, and the measurements essentially coincide with those using parallel plates. In contrast, a clear dependence of the storage modulus on the aspect ratio is detected for specimens having rectangular cross section. The empirical correction used routinely in this test is based on geometrical factors and can account for clamping effects, but works only for aspect ratios above a threshold value of 1.4. By employing a finite element analysis, we perform a parametric study of the effects of the aspect ratio in the cross-sectional stress distribution and the linear viscoelastic torsional response. We propose a new, improved empirical equation for obtaining accurate moduli values in torsion at different aspect ratios, whose general validity is demonstrated in both rheometers. These results should provide a guideline for measurements with different elastomers, for which comparison with dynamic oscillatory tests may not be possible due to wall slip issues

    Physicians’ misperceived cardiovascular risk and therapeutic inertia as determinants of low LDL-cholesterol targets achievement in diabetes

    Get PDF
    Background: Greater efforts are needed to overcome the worldwide reported low achievement of LDL-c targets. This survey aimed to dissect whether and how the physician-based evaluation of patients with diabetes is associated with the achievement of LDL-c targets. Methods: This cross-sectional self-reported survey interviewed physicians working in 67 outpatient services in Italy, collecting records on 2844 patients with diabetes. Each physician reported a median of 47 records (IQR 42–49) and, for each of them, the physician specified its perceived cardiovascular risk, LDL-c targets, and the suggested refinement in lipid-lowering-treatment (LLT). These physician-based evaluations were then compared to recommendations from EAS/EASD guidelines. Results: Collected records were mostly from patients with type 2 diabetes (94%), at very-high (72%) or high-cardiovascular risk (27%). Physician-based assessments of cardiovascular risk and of LDL-c targets, as compared to guidelines recommendation, were misclassified in 34.7% of the records. The misperceived assessment was significantly higher among females and those on primary prevention and was associated with 67% lower odds of achieving guidelines-recommended LDL-c targets (OR 0.33, p < 0.0001). Peripheral artery disease, target organ damage and LLT-initiated by primary-care-physicians were all factors associated with therapeutic-inertia (i.e., lower than expected probability of receiving high-intensity LLT). Physician-suggested LLT refinement was inadequate in 24% of overall records and increased to 38% among subjects on primary prevention and with misclassified cardiovascular risk. Conclusions: This survey highlights the need to improve the physicians’ misperceived cardiovascular risk and therapeutic inertia in patients with diabetes to successfully implement guidelines recommendations into everyday clinical practice

    Hydrodynamics and Brownian motions of a spheroid near a rigid wall

    Get PDF
    In this work, we study in detail the hydrodynamics and the Brownian motions of a spheroidal particle suspended in a Newtonian fluid near a flat rigid wall. We employ 3D Finite Element Method (FEM) simulations to compute how the mobility tensor of the spheroid varies with both the particle-wall separation distance and the particle orientation. We then study the Brownian motion of the spheroid by means of a discretized Langevin equation. We specifically focus on the additional drift terms arising from the position and orientational dependence of the mobility matrix. In this respect, we also propose a numerically convenient approximation of the orientational divergence of the mobility matrix that is required in the solution of the Langevin equation. Our results illustrate that both hydrodynamics and Brownian motions of a spheroidal particle near a confining wall display novel features from those of a sphere in the same type of confinement

    Bifurcation analysis of a molecular model for nematic polymers in shear flows

    No full text
    • 

    corecore