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In this work, we study in detail the hydrodynamics and the Brownian motions of a spheroidal particle
suspended in a Newtonian fluid near a flat rigid wall. We employ 3D Finite Element Method (FEM)
simulations to compute how the mobility tensor of the spheroid varies with both the particle-wall
separation distance and the particle orientation. We then study the Brownian motion of the spheroid
by means of a discretized Langevin equation. We specifically focus on the additional drift terms
arising from the position and orientational dependence of the mobility matrix. In this respect,
we also propose a numerically convenient approximation of the orientational divergence of the
mobility matrix that is required in the solution of the Langevin equation. Our results illustrate that
both hydrodynamics and Brownian motions of a spheroidal particle near a confining wall display
novel features from those of a sphere in the same type of confinement. © 2015 AIP Publishing

LLC. [http://dx.doi.org/10.1063/1.4920981]

I. INTRODUCTION

The characterization of the dynamics of colloidal particles
suspended in fluids in confined geometries is of interest in
several fields such as microfluidics,! medicine,? and interface
analysis.? It is well-known that the diffusive behavior of parti-
cles in the presence of confining walls is dramatically different
from that occurring in the bulk, due to the arising of hydrody-
namic interactions between the particle and the walls.*>

The diffusion of a sphere in confined geometries has been
extensively studied through experiments. Several geometries
have been considered, such as a single planar wall,® two par-
allel walls,'®'2 and a cylindrical cavity.'® The results clearly
show that the dependence of the translational diffusion coef-
ficients on particle position reflects the hydrodynamic inter-
actions that the particle experiences under confinement, for
which theoretical predictions are well established.* In other
words, a generalized Stokes-Einstein relationship holds, link-
ing the local diffusivity to a space-dependent friction matrix or,
equivalently, a space-dependent mobility matrix, to be evalu-
ated for the specific geometry at hand.

In the case of non-spherical particles, also the rotational
diffusivity needs to be evaluated, and roto-translational cou-
plings may become important, especially in confined geome-
tries.'* On the experimental side, even for the simplest case
of axisymmetric particles (e.g., rods or spheroids), tracking
of the orientation of the axis of symmetry is required, which
is, of course, much more difficult than tracking of the center
of mass. For this reason, the first experimental measurements
have been limited to particles strongly confined between two
parallel walls'>~'® (quasi-2D confinement), where the particle
axis of symmetry remains around the gap midplane, parallel
to the walls. Quite recently, the 3D tracking of both orien-
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tation and center of mass of elongated particles has been
reported.'®2! Measurements of the rotational diffusivities of
nanorods tethered to a rigid wall confirm that the diffusion
process is well predicted through hydrodynamic simulations
giving the friction matrix.??

Many examples of numerical simulations on Brownian
non-spherical particles are reported in the recent literature.
Brownian dynamics simulations of unbounded suspensions of
rod-like particles*~?” and arbitrarily shaped particles’®=" have
been carried out for different volume fractions, ranging from
dilute to concentrated regimes, although interparticle hydrody-
namic interactions are often neglected. The inclusion of hydro-
dynamic interactions gives rise to “corrective terms” in the
Brownian dynamics.?!*? In this regard, Padding and Briels*
recently computed the friction of a rod immersed in a New-
tonian liquid near a single planar wall. A stochastic rotation
dynamics method was employed,** and a shish-kebab model
was used to describe the rodlike particle. The translational
and rotational friction tensors were calculated for different
orientations and particle-wall distances. Due to computational
limitations, however, a relatively small simulation box was
used that, according to the authors themselves,?? induces some
spurious self-interaction with periodic images of the rod and
hydrodynamic interactions with the second (far) wall.

In this paper, we present a detailed study on (i) the hydro-
dynamic interactions and (ii) the resulting hindered Brown-
ian motion of a spheroidal particle suspended in a quiescent
Newtonian fluid in the proximity of a rigid flat wall. In the
first part of the paper, the translational, rotational, and roto-
translational mobility matrices are computed by finite element
simulations in the whole range of possible orientations and
particle-wall distances, from an almost touching particle to
very large distances from the wall, so that the unbounded
conditions are recovered. In the second part of the paper,
we exploit the computed mobility matrices to investigate the

©2015 AIP Publishing LLC
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effects of the spheroid-wall hydrodynamic interactions on the
Brownian motion. A Langevin equation, properly modified to
account for space-dependent mobility coefficients, is consid-
ered and numerically solved. Results on the translational and
rotational drifts induced by the confining wall are presented.

The paper is organized as follows: in Sec. II, the hydro-
dynamic problem of a rigid body in Stokes regime is briefly
reviewed; the spheroid-wall geometry and the relevant hydro-
dynamic governing equations are then presented in Sec. III; in
Sec. IV, the mobility matrices computed from finite element
numerical simulations are reported; in Sec. V, the discretized
version of the Langevin equation and the above-mentioned
corrective terms arising from particle-wall hydrodynamic
interactions are illustrated; the translational and rotational drift
velocities induced by the corrective terms in the Langevin
equation are presented in Sec. VI; finally, some conclusions
are drawn in Sec. VIIL.

Il. RIGID BODY STOKES HYDRODYNAMICS

In this section, we briefly recall how the dynamics of an
arbitrary rigid body suspended in a Newtonian fluid at vanish-
ing Reynolds numbers (Stokes limit) is formulated. Linearity
of Stokes hydrodynamics implies that the equations of motion
of the rigid body can be represented by a linear system relating
the particle translational velocity u and rotational velocity w
to the force F and torque T that are externally applied to the
particle (resistance problem),*

et

In this equation, the matrix Z is the so-called “friction” or
“resistance” matrix. Such a matrix can be further decomposed
as

Za Zb

Z= .
zZ, Z.

2

It can be shown® that the friction matrix is symmetric and
positive definite. From the symmetry property, it follows that
the sub-matrices Z, and Z. are symmetric as well. By using
the definitions in Eq. (2), Eq. (1) can be equivalently written
in expanded form as

3)

F=Z, u+Z, w
T=Z, u+Z. o’

Of course, one may choose to consider the “inverse prob-
lem” as well (mobility problem), where the unknowns u and

w are given by
“Vom. (¥ 4
ol \1T) @)

The symmetric and positive definite matrix M is the so-called
“mobility matrix,” which can be itself partitioned as

M, M,
M = V' aTAE 4)
b c
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with analogous symmetry properties as those of the friction
matrix, i.e., with both the submatrices M, and M, being sym-
metric. Equation (4) can then be written as

u=M, F+M,-T
(6)

w=M, F+M.-T’

Of course, from Egs. (1) and (4), the mobility and the fric-
tion matrices are related by an inversion relation M = Z~!. The
friction and mobility matrices contain all the information about
the rigid body shape and about the hydrodynamic interactions
between the particle and the boundaries, if any.

lll. GOVERNING EQUATIONS

We address now the hydrodynamic problem of a freely
buoyant rigid spheroid suspended in an incompressible New-
tonian liquid in proximity of a rigid flat wall. The problem of
an axisymmetric particle near a boundary has been partially
investigated in previous works;*>-¢ the method used in those
papers (boundary integral method) is different from that used
in the present work (see below). Moreover, we compute the
complete mobility matrices, whereas only specific configura-
tions were considered in the references indicated above. We
first present the geometry and the adopted coordinate system;
then, we discuss the governing equations and the procedure
used to solve them, and thereafter compute the mobility matrix
M from Eq. (6) above.

As depicted in Fig. 1(a), a Cartesian reference frame with
the origin on the wall and the z-axis normal to the wall is
considered. The particle center of volume r is located on the
z-axis. Furthermore, without loss of generality, we select the
x-axis of the reference frame coinciding with the projection
along z of the spheroid major axis on the wall. We denote with
a the length of the major semi-axis and with b the length of the
minor semi-axis. The particle aspect ratio is then defined as
AR = a/b. The distance between the particle center of volume
and the wall is denoted by #, and the angle between the major
axis and the wall normal vector n is denoted with 0, so that
0 = n/2 identifies a spheroid parallel to the wall.

Due to the geometry considered in this work, i.e., that of a
spheroid in proximity of a single infinite flat wall, for any given
particle-wall distance £, all configurations obtained by rotating
the spheroid around the z-axis, i.e., for the same values of the
angle 0, are equivalent. Consequently, the particle-wall hydro-
dynamic interactions and, in turn, the friction and mobility
matrices are functions of 4 and 6 only, i.e., Z = Z(h,60) and
M = M(h,0). Because of the invariance for rotations around z,
it is sufficient to compute the mobility (or friction) matrix only
for configurations with the major axis of the spheroid lying in
the xz-plane; the mobility or friction matrices for orientations
outside the xz-plane are simply obtained by rotations around z.

In this work, we compute the friction matrix by first solv-
ing the Stokes equations,

Vv=0 @
—Vp+uVv =0

that governs the fluid dynamics of an incompressible Newto-
nian fluid under the assumption of inertialess conditions. In
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(b)

FIG. 1. (a) Schematic representation of a spheroid near a flat planar wall and
of the coordinate system employed. The cubic computational box of side L
is also shown. (b) Representation of the orientation vector p and the center of
mass vector r.

these equations, v, p, and u are the velocity, pressure, and
viscosity of the fluid, respectively. The following boundary
conditions apply:

; ®)

v=u+wx(rs—r) onl,
v=0 onl,

where r; — r denotes the distance vector of a point ry on the
spheroid surface from the spheroid center of volume r, and the
surfaces I', and I',, are the particle surface and the boundaries
of the cubic computational box, as depicted in Fig. 1(a). Both
equations in Eq. (8) express “no-slip conditions.” The first
equation accounts for the rigid-body motion of the particle,
whereas the second equation expresses the quiescent condi-
tions of the fluid “far” from the particle, i.e., at the physical
wall z = 0, and at the other (virtual) walls of the computational
box.

By imposing the particle translational and rotational veloc-
ities # and w, respectively, the system of equations is numer-
ically solved by a standard Galerkin-finite element method
in the cubic box with length L. A boundary-fitted mesh with
tetrahedral elements is used. A quadratic continuous interpo-
lation (P2) is used for the velocity and a linear continuous
interpolation (P1) is used for the pressure. Mesh convergence
has been verified for all the calculations presented in this work.
A finer mesh is required when the particle is close to the wall
in order to accurately solve the fields between the spheroid and
the wall. The total number of elements varies between about

J. Chem. Phys. 142, 194901 (2015)

60000 and 120 000. Since the computational box is meant to
represent a semi-infinite 3D domain, to guarantee unperturbed
conditions far from the particle, the length L is chosen such
that L > h and L > a. Preliminary results show that L = 40a
is sufficient to neglect the effects of the virtual walls. In fact, we
verified that when the particle is located in the middle of our
computational domain, the discrepancy between the calculated
friction matrix and its available analytical expression for an
unconfined spheroid* is always less than 3%. Once the pressure
and velocity fields corresponding to the given (u, w) couple are
obtained, the drag force and torque acting on the particle are
readily computed through

F = / [-pI + p(Vv + V¥")] - n, dT,,
v ©)
T= [ (ry—r)X[(=pIl + w(Vv + W) - n,| dT,,
rP
where n,, is the local normal to the particle surface, pointing
to the fluid. With u, w, F, and T known, the friction matrix
Z(h,6) can now be computed from Eq. (1).

In this regard, we would like to mention that Z(#,0) is a
symmetric 6 X 6 matrix with, in general, 21 unknowns. The
relationship in Eq. (1), on the other hand, only gives 6 scalar
equations. The computation of the friction matrix entries is
then actually performed through the following procedure. In
each simulation, we impose a single non-zero component of
the “particle velocity vector” (u, ) (e.g., uy), solve the system
of Eq. (7) together with boundary conditions (8), and compute
F and T through Eq. (9). The set of Eq. (1), however, contains
now 6 unknowns only (e.g., the first column of the friction ma-
trix, if we imposed u,) and can then be solved. The procedure
is then repeated by imposing the other particle velocity vector
components one at a time, i.e., with all the other components
being nil. Six iterations then complete the cycle, giving all the
entries of the friction matrix. Finally, the mobility matrix is
computed by inversion, as it is M(h,0) = Z(h,6)™".

IV. MOBILITY MATRIX

In this section, we present the mobility matrix resulting
from our numerical simulations. All the reported results refer
to a spheroidal particle with aspect ratio AR = 8, which is suffi-
ciently far from a spherical shape and, hence, strong deviations
from the isotropic case are expected. On the other hand, the
aspect ratio is well below the value such that a slender-body
approximation can be applied. As mentioned above, M(h,0)
is a 6 X 6 symmetric matrix with 21 independent components.
However, due to the symmetries of the problem, 9 out of such
21 components are in fact zero, as described below.

To efficiently capture the dependence of the mobility ma-
trix M on h and 6, the computations are performed on a
predetermined grid of points in the space (4, 6). More specif-
ically, the distance # is varied in the range [0, 1205b] that is
divided in 120 points. A non-uniform grid is selected, with
smaller intervals for lower values of A, i.e., near the wall,
where larger gradients of the mobility matrix are expected.
The angle 6 varies in the range [0, 7] that is divided in 61
uniformly distributed points. For each grid point, convergence
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of the numerical solution of the corresponding hydrodynamic
problem is of course checked by running simulations with
different mesh sizes.

A further observation concerning the mobility matrix
M(h,0) is as follows. The mobility coefficients as & — oo
must of course become those pertaining to an unbounded
spheroid. It should be emphasized, however, that this asymp-
totic behavior does not necessarily imply that these coefficients
are independent from 6, because of our choice for the reference
frame, in which the x-axis coincides with the projection of
the major axis (see Fig. 1(a)). In other words, the mobility
coefficients that become independent from the angular posi-
tion in the unbounded case are those computed along the
principal axes of the spheroid, not those of Egs. (10)—(12)
below.

In Subsections IV A-IV C, we present the trends of
the coeflicients of the sub-matrices M (h,0), M(h,6), and
M (h,0) that form the complete mobility matrix M(h,8), as
reported in Eq. (5). All the quantities are presented in dimen-
sionless form. The distance % is made dimensionless by the
spheroid minor axis length 2b. Therefore, when the spheroid
is oriented with its major axis parallel (orthogonal) to the wall,
the minimum dimensionless distance (i.e., the particle touches
the wall) is 2 = 0.5 (h = 4). The components of the matrices
M (h,0), Mp(h,0), and M.(h,0) are made dimensionless by
multiplication with the fluid viscosity u times the quantities
(2b), (2b)?, and (2b)?, respectively.

A. Translational mobility

The translational mobility matrix M, (h, ) is a symmetric
matrix with the following non-zero entries (for the problem
investigated here):

Ma,xx(h’ 9) 0 Mu,xz(h’ 9)
M,(h,6) = 0 Mg, (h,6) 0 . (10
Ma,XZ(h’g) 0 Ma,ZZ(h’g)

Indeed, since y = 0 is a plane of symmetry, no coupling
between a force in the y-direction and a velocity in the other
two directions can exist, implying that M, ., = M, ;, = 0.

In Figs. 2-4, we report the coefficients M, (x(h,6),
Mg, (h,0), and M, ..(h,0), respectively. In these figures,
we only report the interval 6 € [0,7/2], because the three
coefficients are symmetric around 6 = /2 (and of course
around 6 = 0). For any given h, the qualitative behavior of
the mobility coefficients is essentially unchanged from that
of an unbounded spheroid (h — o0). Notice however that,
for a fixed 6, all the mobility coefficients show a monotonic
reduction as the spheroid approaches the wall, with an abrupt
fall to zero in close proximity of the wall. From Figs. 2—4, the
coefficient M, ,.(h,0) is seen to be the most rapidly changing
one when varying (/,6), meaning that the motion in direction
normal to the wall is the most affected by hydrodynamic
interactions.

In Fig. 5, we show the calculated “mixed” coefficient
M, «.(h,6) that represents the translational coupling of direc-
tions x (velocity) and z (force). We only report the inter-
val 6 € [0,7/2]: indeed, M, ..(h,0) is antisymmetric around

J. Chem. Phys. 142, 194901 (2015)

6

FIG. 2. Dimensionless mobility coefficient M, xx as a function of & and 6.
The steep vertical lines and the sudden decrease of M, x x from a finite value
to 0 mean that the spheroid approaches an excluded volume configuration.
Note that M x is symmetric with respect to 6 =0 and 6 =7 /2.

0 = 0 and 6 = /2. At variance with the other components of
the translational mobility matrix, the coefficient M, y,(h,0)
shows a maximum in the interval € [0,7/2], at @ ~ /4 (and
a corresponding minimum in 6§ € [7/2,7]). We again remark
that the trend of M, .(h,0) for large h-values results from the
choice of the reference frame as in Fig. 1(a). Indeed, it can be
shown that, as & becomes infinity, M,, ., is proportional to the
mobilities along the principal axes of the spheroid through the
factor sin(#) cos(6), which is exactly the large-4 results of our
simulations. As the spheroid approaches the wall, it can be seen
that the reduction of M, ..(h,6) induced by the presence of the
wall is quite modest, except for extremely small particle-wall
distances.

B. Rotational mobility

The rotational mobility matrix M.(h,60) is a symmetric
matrix and, on the basis of the same symmetry arguments used

V] 0.0

FIG. 3. Dimensionless mobility component M, as a function of & and 6.
Note that M, ,,, is symmetric with respect to # =0 and 6 =7 /2.
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FIG. 4. Dimensionless mobility component M, . as a function of & and 6.
Note that M, - - is symmetric with respect to 6 =0 and 6 =7/2. FIG. 6. Dimensionless mobility component M_x as a function of / and 6.
Note that M. x is symmetric with respect to @ =0 and 6 = /2.

for the matrix M,(h, @), it has to be in the form

Meon(h,6) 0 Mexs(h,0) Mc,x.x.(h,G) reprf.:sent the “spip” rotational mobility,. ie., t‘he

MAhO) 0 M o 0 1 mobility pertaining to a rotation around the spheroid major
o(h,0) = cyy(h,6) - Db axis. Such a mobility is of course larger than the xx rota-
M x2(h,0) 0 M, z2(h,0) tional mobility when the spheroid is almost perpendicular to

i.e., it contains only four distinct nonzero coefficients. In Figs. 6 the wall (6 ~ 0), i.e., for rotations (almost) around the sphe-

and 7, we report the coefficients M, .(h,8) and M,. ,,(h,6) roid minor axis. Notice that also in this case (similarly to what
(For t’he sake of brevity, we choosé’)tc())( nc’)t report tlcl’éy;lo; of said for the translational mobilities), the dependence on 6 of
M. ,.(h,6), as the behavior of this component is qualitatively the mobility coelfﬁment Me,xx(h.6) as h goes to infinity is
similar to that of M, ,.(h,0).) In these figures, we only report relatec} to the choice ‘?f the ﬁ’fed reference frame.

the interval 6 € [0,7/2] (the two coeflicients are symmetric F m.ally, th? roj[atlonal rp1xed component.Mc,xZ(h,G) .has
around 6 = /2, and of course around 6 = 0). Figures 6 and a behavior qualitatively similar to the translational coefficient
7 clearly show that the diagonal rotational mobilities are only Ma,x2(h,0) (see Fig. 5). For brevity then, we choose to not
marginally reduced as & becomes smaller, remaining in fact report the corresponding plot.

constant up to distances that are lower than the ellipsoid major

semi-axis. For what matters the Mc’yy(h,e) Coeﬂicient, the C. Rotation-translation coupling mobility

angle 6 has a small influence as well. The M. ..(h,8) coef- ) ] ) . )
ficient, instead, is much more affected by @ variations. This The rotation-translation coupling mobility matrices

can be explained by noticing that when 6 is equal to /2, M(h.,6) or Mj,(h.6), as noted in Eq. (6), relate the transla-
tional velocity to an applied torque and the rotational velocity

0 2 0.0

FIG. 5. Dimensionless mobility component M, as a function of /2 and 6. FIG. 7. Dimensionless mobility component M., as a function of 4 and 6.
Note that My, x- is anti-symmetric with respect to =0 and 6 =7/2. Note that M. ,,,, is symmetric with respect to 6 =0 and 8 = /2.
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to an applied force, respectively. Since it seems to us easier to
understand the roto-translational coupling effects by consid-
ering the resulting rotational velocity when a force is applied
to the center of volume of the spheroid, we choose to discuss
here the M (h,6) only.

The sub-matrix MZ(h,H) is, in general, a non-symmetric
matrix.*28 The situation considered in this work, however,
implies that MZ(h,Q) only contains 4 non-zero entries,

0 M, (h,6) 0
M (h,60) = | M}, (h,6) 0 M}, (h6)|. (12)
0 My 2,(h.0) 0

Indeed, since y = 0 is a plane of symmetry, a force applied
in x- or z-direction cannot induce an angular velocity around
the x- or z-axis: hence, components xx, xz, zx, and zz of
M Z(h, ) are nil. In addition, the symmetry of the particle shape
with respect to the xz-plane implies that a force along the
y-direction cannot induce any angular velocity around y: it
is MbT’W(h,G) =0.

In Fig. 8, we report the coefficient M, ; yx(h, ). (For clarity,
we choose to present all the results in this subsection as con-
tour plots.) For a fixed value of 4, MbT’ yx(h,ﬁ) switches from
negative values when 6 is near /2 (spheroid almost parallel
to the wall) to positive values when 6 approaches either O or 7.
The solid curve in the figure is the set of (%, ) couples where
MZ yx(h,e) = 0; within the tongue-like region delimited by
such a curve, the coefficient is negative, outside it is positive. A
negative/positive value of M, ., (h,6) means that the spheroid,
dragged along positive x, will rotate so that its “leading edge”
(the tip of the spheroid at positive x) moves away from/towards
the wall, thus rotating towards smaller/higher values of 6.
In other words, for (k,0) inside the tongue-line region, the
spheroid rotates towards the z-direction.

The points on the boundary of the tongue-like region, cor-
responding to MbT’ yx(h,e) = 0, are “equilibrium” points, i.e., a
force applied to the x-direction does not produce any rotation.

0.0015

w
N

=

0.0010

0.0005

. -0.0005

FIG. 8. Dimensionless mobility component M Z’ yx 352 function of & and 6.
The solid curve on the left separates accessible configurations from excluded
volume ones. In the “tongue-like” region, M ; yx is negative, and outside it is
positive. Thus, roto-translational coupling (force along x and rotation around
y) is clockwise in the inner region and counterclockwise outside (see text).
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Specifically, the lower portion of the curve MZ yx(h,H) =0
is made of stable equilibrium points 6., whereas the up-
per portion of the curve is made of unstable equilibrium
points 6;;*'. Consequently, for whatever value of h, a spheroid
dragged in positive x-direction tends to the stable equilibrium
orientation .4 (pertaining to the given h) ifitis 6y < 0;“’;”, with
6 the initial orientation of the spheroid. All of this is pictorially
illustrated by the cartoons in Fig. 8.

Finally, from Fig. 8, we see that, for values of 6 close
to /2, MbT’ yx(h,é)) has a minimum as the particle is very
close to the wall, as shown by the presence of a closed iso-
M,, ,  curve (the dashed curve in the figure). Externally to such
closed curve, M bT’ yx(h, #) becomes a monotonic function of /.
Precisely, it is a monotonically increasing function inside the
tongue-like region and a monotonically increasing function of
h outside.

In Fig. 9, we report Ml{ Xy(h,&). This coefficient rules the
rotational velocity in x direction when a force is applied along
y. The coeflicient is calculated to be always negative. Hence,
the rotational velocity along x has the effect of moving the ma-
jor axis of the spheroid outside the xz-plane, with the “leading
edge” moving to positive y values if 8y € [0,Z] and to nega-
tive y values when 6y € [5,7]. The former situation is por-
trayed in the cartoon of Fig. 9. In the peculiar case (6 = n/2),
i.e., when the spheroid lies parallel to the wall, there is a
residual rotational velocity along the x-axis: the particle is
experiencing a small “spin” velocity around its major axis.
Such an effect disappears, as it must be, moving away from
the wall.

In Fig. 10, the trends of the coefficient MZ yz(h,H) are
reported. For a fixed A, MbT, yz(h,e) is an odd function of 0
(around 7). A negative value of M,i yz(h,e) (6 € [0,5]) means
that a spheroid dragged in the positive z-direction, i.e., going
away from the wall, rotates in the xz plane so that the “leading
edge” turns away from the wall; the opposite rotation occurs,
with the “leading edge” going towards the wall, with positive

0

=g

—-0.0005

h ~0.0010
. ~0.0015

FIG. 9. Dimensionless mobility component M Z,xu as a function of & and 6.
The solid curve on the left separates accessible configurations from excluded
volume ones. Notice that M;xy is always negative. Thus, roto-translational
coupling (force along y and rotation around x) is always clockwise: the
leading tip of the spheroid moves on the circular base of a cone around the
x-axis, towards positive y if @ < /2 (see text).
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-0.001

-0.002

FIG. 10. Dimensionless mobility component M }f yz a8 function of & and 6.
The solid curve on the left separates accessible configurations from excluded

volume ones. Because of the change of sign in MZ e with increasing 6, the

roto-translational coupling (force along z and rotation around y) is clockwise
below 6 = 7t /2 and counterclockwise above (see text).

values of MbT’yz(h,G) (6 € [5,7]). In other words, the 6 = 7/2
angular position is an unstable equilibrium point, whereas 6
=0 and 0 = & are stable. This is pictorially illustrated by the
cartoons in Fig. 10. A spheroid dragged away from a wall
will align in the direction normal to the wall itself. We would
like to stress that the just described situation is reversed when
the dragging force is directed towards the wall, i.e., towards
negative z. Indeed, in the latter case, the angular position
0 = /2 becomes the stable one: a spheroid dragged towards
the wall will become parallel to the wall itself.

In Fig. 11, we plot the trends of M _ (h,6). This coeffi-
cient rules the rotational velocity around the z-direction when a

force is applied along y. The rotational velocity along z does

0.001

wiN

—-0.001

FIG. 11. Dimensionless mobility component M;w as a function of & and 6.
The solid curve on the left separates accessible configurations from excluded
volume ones. Because of the change of sign in M lj;,zy with increasing
6, the roto-translational coupling (force along y and rotation around z) is
counterclockwise below 6 = 71 /2 and clockwise above (see text).
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not induce any change in the angle 6, but brings the major
axis of the spheroid outside the xz-plane. The coefficient is
calculated to be positive in [0, 7 ] and negative in [ 7, 7]. Hence,
the “leading edge” moves to positive y values if 6y € [0, 5]
(see the cartoon in Fig. 11) and to negative y values when
6o € [5.n]. In the peculiar case (6 = n/2), i.e., when the
spheroid lies parallel to the wall, it remains in the xz-plane.
As a final remark, Figs. 8-11 show that as the spheroid-
wall distance h increases, all the components of M (h,0)
vanish: no rotation-translation coupling does exist for an un-
bounded spheroid. We also point out that the values reported
in these figures are one order of magnitude smaller than the
components of M, (h,0). However, as it will be discussed later,
the sub-matrix M (h,0) needs to be retained in Brownian
dynamics simulations to get the correct spheroid dynamics.

V. SPHEROID BROWNIAN MOTIONS

In Secs. II-1V, a full characterization of the hydrodynamic
interactions of a spheroidal particle with a rigid wall has been
given. In what follows, we consider the effects of such particle-
wall interactions on a spheroidal particle undergoing Brownian
motion.

In the literature, the Brownian motion of a rigid particle
is typically investigated by two different approaches.’! One
of them is through a generalized diffusion equation, which
describes the evolution of a probability distribution function
in the degrees of freedom of the particle. Another approach
is through a Langevin equation, which directly describes the
evolution of the particle’s degrees of freedom, giving then a
stochastic “trajectory.” In this paper, we adopt the Langevin
description. In Secs. V A-V D, we present the general equa-
tions governing the dynamics of a confined Brownian sphe-
roidal particle, as well as the employed numerical method.

A. Langevin equation

The Langevin equation for a free rigid Brownian parti-
cle is a Stochastic Differential Equation (SDE)*"3® with the
stochastic (thermal) forcing modeled by a random noise term
accounting for particle mobility. The presence of a spatial
confinement induces a configurational dependence of the par-
ticle mobilities that, in turn, makes the random noise a multi-
plicative noise.* In integrating the SDE, we prefer to avoid the
difficulties related to the interpretation of a stochastic integral
containing a multiplicative noise.***” We present instead the
Langevin equation directly in a discretized form, which is
readily solved.?' The evolution of a trajectory of a uniaxial par-
ticle is fully characterized by its center of mass position vector
r(¢) and the unit orientation vector p(z) that are represented
in Fig. 1(b). Notice that the frame of reference in Fig. 1(b) is
defined once and for all at time # = 0 and is hereafter referred
as the “fixed frame.” The discretized form of the Langevin
equation for a spheroidal particle suspended in a Newtonian
quiescent fluid, in the absence of any inertia and of any external
force, reads

r(t +At) =r(t) + Arg(t) + kgT[V - M (t) + R - M,(t)]At,
(13)
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p(t+At) =p(t) + AOg(1) X p(t) + %A@B(t)

- [p()AO(1) — AOg(1)p(1)]
+kpT [V -ML(t) + R -M ()] At xp(t),  (14)

where At is the time step size and kg7 is the product of
the Boltzmann constant kp times the absolute temperature 7.
Notice that the matrices M,, M}, and M, being a function
of both the position vector r(t) and the orientation vector
p(t), depend on time. Since the time discretization reported in
Egs. (13) and (14) is explicit, these matrices are evaluated at
time level ¢.

The terms Arg and A@p in Egs. (13) and (14) are the stan-
dard Brownian translational and angular displacements be-
tween time ¢ and time ¢ + Az, respectively, defined with respect
to the fixed frame. These two terms are vectorial random
Gaussian variables defined by the following moments:

(Arg) =0,
(AOp) =0,
(ArgArg)y = 2 At kgTM ,(r(t),p(2)), (15)

(A@pAOg) = 2 At kgTM (r(1),p(1)),
(ArsA@g) = 2 At kgTMy(r(1),p(1)).

These definitions follow from the fluctuation dissipation the-
orem’! that relates the thermal fluctuations in the suspending
fluid to the particle-fluid viscous dissipation. As clearly shown
in Eq. (15), both Arg and A@p are terms of order Az!/?, as
expected for a random Brownian displacement. Notice that,
in Eq. (15), the dependence of the mobility matrices on the
instantaneous system configuration is explicitly shown, to
highlight how the properties of the stochastic forcing Arg and
A@®p can in fact depend on the position and orientation of
the particle in space. This is of course just our case, with the
presence of a confining wall.

The term “quadratic” in A@p (and, hence, linear in Af) in
Eq. (14) is needed to preserve the condition |p| = 1 up to order
At, as explained in Refs. 25 and 28. Indeed, it is readily seen
that

(p@t + AD)])y = 1+ O(Ar). (16)

Some further observations on this “quadratic” term and on its
average are given in Appendix B.

The “convective” terms (explicitly of order A¢) in Egs. (13)
and (14) stem from the spatial and orientational dependence
of the matrices M,, M, and M.,*33"* and are needed to
assure that the correct Boltzmann equilibrium distribution is
recovered at equilibrium® (see also Sec. V D). The leftmost
convective terms are the standard spatial divergence of M, and
MZ, respectively; the other two convective terms in Egs. (13)
and (14) contain instead the “divergence on the unit sphere,”
i.e., a divergence in the p-space (with |p| = 1), where the

operator R is defined as follows:?!

0
R=px—. 17
p op (17)
Of course, for an unconfined spheroid, all those convective

terms vanish, and we recover the classical Langevin equation
for an axisymmetric particle.
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The above equations are valid for any arbitrarily confined
uniaxial particle, by considering the appropriate matrices M,
My, and M.. Although the principles behind Eqs. (13) and
(14) are well known in the literature®' and many authors have
numerically tested the drift terms,?’-3%32% to the best of our
knowledge, this is the first time that a Langevin equation for
a confined uniaxial particle is explicitly in this discretized
complete form, fully embodying roto-translational coupling.

B. Generation of the Brownian displacements

For the numerical generation of the Brownian forcings
Arg and A@g between ¢ and 7 + Ar, with moments defined by
Eq. (15), the following equations are used:

A5\ _ kT m(r(t), p(t)) - AN (18)
Ay " VTP P\ AN
In Eq. (18), the matrix m is the square root of the matrix M,

defined as
M(r(t), p(t)) = m(r(t), p(t)) - m" (r(1), p(1)).  (19)

The matrix m is unique since M is symmetric positive definite.
The two vectors AN, and AN, are vectorial Gaussian random
variables identified by the following moments:

(ANy) =0,

(AN>) =0,
(AN|ANy) =1, (20
(AN»AN,) =1,
(ANAN,) = 0,

where I is the identity matrix. At each time step, the decompo-
sition of the matrix M according to Eq. (19) is required. In our
case, M is a 6 X 6 matrix, and the decomposition procedure is
computationally fast.

C. Random finite difference (RFD)

Solving Egs. (13) and (14) requires the computation of the
translational and orientational divergence terms. As discussed
in the first part of the present work, we have pre-computed
the mobility matrix on a spatial grid (6, %) for the case of a
uniaxial spheroid in the presence of a wall. Here, then, these
data could be directly used to compute the divergence terms.
Such operation, however, is computationally expensive.*’ In
situations of confinement different from the one considered
here, also, a precomputed table for the mobility matrix in
all possible system configurations is generally not available.
To overcome this problem in general terms, we present an
extension of the RFD approximation of the spatial divergence,
originally introduced in Delong et al.,*' to the divergence on
the unit sphere. As shown in Appendix A, for a given matrix
A(r,p), the following relationships hold:

1
V-A@r.p) = lim ~ (A(r + eAq. p) - Ag ~ Ar.p) - Aq)).
e

o1
R-A(r, p) = lim - ((A(r,p + eAq X p) - Aq — A(r,p) - Aq)),
(22)
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where Aq is a standard Gaussian random variable defined by
the moments

(Aq) =0,
(AgAq) = 1.

By discretizing Egs. (21) and (22) for a finite but small e,
we obtain, on average, an approximation of the translational
and orientational divergences of matrix A. Notice that the
evaluation of the right-hand sides of Egs. (21) and (22) re-
quires a random “dummy” update of the particle position
and orientation, and the computation of matrix A in this new
configuration. The advantage of this procedure is that the
small discretization parameter € is not related to the time step
size At of the “main” numerical integration and can then be
chosen as small as possible. In our case, with A representing
a mobility sub-matrix, the smallness of € will guarantee to
avoid excluded volume problems. Of course, some caution is
required to reduce the numerical roundoff.

(23)

D. Algorithm verification

In Subsections V A and V B, we have presented and dis-
cussed the Langevin equations describing the Brownian mo-
tions of a uniaxial particle under a generic confinement. In
this subsection, we report some results obtained by the direct
solution of such stochastic equations and compare them with
computations made from the hydrodynamic calculations illus-
trated in the first part of the paper. In this way, we aim at
obtaining a validation of our numerical algorithm.

First of all, let us show how the spheroid spatial distri-
bution under confinement is correctly described by numer-
ical results from Eqgs. (13) and (14), whereas it would be
wrongly evaluated in the absence of the “convective” terms,
i.e., the terms containing the spatial and angular divergences
of the mobility matrices. In Figure 12, numerical results show-
ing the equilibrium probability distribution functions of the
particle-wall distance 4 computed from “complete” (panel (a))
and “incomplete” (panel (b)) Egs. (13) and (14) are reported.
To compute the histograms of the equilibrium probability,
we simulated a trajectory of 80 x 10° time steps with At = 5
x 1073 (in dimensionless units). We restrict the motion of
the spheroid in the interval 4 € [5,9] by rejecting the time
steps such that the spheroid is displaced outside this interval.

(a)

f(h)
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0.05 — — — — e -
0.04
0.03
0.02

0.01

000 — LR T

5.1 6.1 7.1 8.1 8.9
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The interval is chosen such that the particle experiences no
excluded volume effect, but the hydrodynamic interactions
with the wall are still relevant, as shown by the mobility trends
shown in Sec. IV. It is apparent that the correct description of
the spheroid distribution, giving a constant value throughout,
is only obtained from the “complete” set of Egs. (13) and (14).
Additionally, we compute (as an example) the xx transla-
tional diffusion coefficient D, (h, ) of a spheroid near a rigid
wall. Such diffusion coefficient is obtained in two ways, (i)
through the Stokes-Einstein equation,
Dyx(h,0) = kT Mg, xx(h,0), (24
with the mobility matrix coefficient calculated directly from
hydrodynamics, and (ii) through the spheroid Mean Square
Displacement (MSD) along x, pertaining to a given At,

(Ar3(h,6))

2At (25)

Dxx(h, 0) =
that is computed by solving Eqgs. (13) and (14). Of course,
in order to solve the stochastic equations, the hydrodynamics
calculations are needed as well, to obtain the mobility matrices
entering the Brownian displacements and the convective terms
in Egs. (13) and (14).

For any given initial particle-wall distance % and orienta-
tion @, we released 10° spheroids and correspondingly solved
one time step At of Langevin equations (13) and (14); the
average in Eq. (25) was then calculated from those results. Of
course, it has also been checked that averages calculated with
larger time steps always led to the same diffusion coefficient,
i.e., that the originally adopted Ar was “small enough.” The
just described procedure at a given (4,0) couple was then
repeated for a grid with / varying from 1 to 20, and 6 uniformly
distributed between 0 and 7.

In Fig. 13, we report D,,(h,0) computed with both
Eq. (25) (circles) and Eq. (24) (surface). Agreement between
the two computations is extremely good. The same level of
agreement is also found for other entries of the diffusivity
tensor (not shown). All of this validates the adopted numerical
method and opens the way to the calculations of drift effects
(ensuing from confinement) through the Langevin approach,
to be discussed in Sec. VI.

(b)

f(h)
0.06

0.05 M= —
0.04
0.03
0.02

0.01

h oo LT AL T T LR L g

5.1 6.1 7.1 8.1 8.9

FIG. 12. Equilibrium probability distribution functions of the particle-wall distance & computed through Eqgs. (13) and (14) including (a) and not including (b)

the spatial and angular divergences of the mobility matrices.
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FIG. 13. Comparison between D x(h,0) computed through Eq. (25) (cir-
cles, from Brownian dynamics) and Eq. (24) (surface, from hydrodynamics).

V1. SPHEROID DRIFT VELOCITIES

In this section, we investigate the drift effects induced
on a Brownian spheroid by particle-wall hydrodynamic inter-
actions. Theoretical results show that a sphere undergoing
Brownian motion under confinement (hence, with a space-
dependent mobility matrix) experiences a net drift veloc-
ity proportional to the divergence of the mobility matrix.*
Recently, experimental measurements showed the existence
of asymmetric Brownian displacements of the sphere center
of mass in proximity of a rigid wall.” Other experiments
measured the drift velocity of spheres in a divergent parallel
plate geometry and confirmed the proportionality with the
divergence of the mobility matrix.*> The existence of this drift
velocity must be accounted for when measuring the effect of
external potentials on the Brownian motion.*? Indeed, recent
experiments showed that neglecting the drift velocity leads to
an erroneous qualitative evaluation of the conservative forces
acting on Brownian spheres.** We would like to point out that
the presence of a “drift” velocity does not mean that there is a
net particle flux in the velocity direction. The drift velocity is,
instead, an effect of the variation of the particle mobility with
the configuration of the system, and its adequate evaluation is
required to obtain the correct particle equilibrium distribution.

To fully characterize the behavior of a spheroidal particle
near a rigid wall, we use the same coordinate system described
in Sec. III and shown in Fig. 1(a). In this reference frame, it
is sufficient to evaluate the drift velocity at any A-value only
for orientations of the spheroid in the xz-plane. Indeed, drift
velocities for other orientations (out of the xz— plane) can be
readily obtained by a rotation around the z-axis. Hence, the
drift velocity is a function of 4 and 6. At variance with the
spherical particle case, we distinguish two drift velocities: a
translational drift velocity defined as

<Ar(h,9)

. >=kBT[V~Ma(h,9)+R-Mb(h,9)] (26)
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and a rotational drift velocity given by

Ap(h,0)
At
= kpT [V - M} (h,0) + R - M.(h,0)] X p(6)

. <ﬁA@B<r>  POAO() - A@)B(r)p(t)]} L@

In Egs. (26) and (27), the left-hand sides are averages of
fluctuating quantities (position and orientation). On the right-
hand sides of those equations, the terms containing the spatial
and angular divergences are deterministic, whereas the last
term of Eq. (27) is still written as an average to be computed:
actual averaging is worked out in Appendix B.

It is useful to underline, at this stage, that the translational
drift for a spherical particle only contains the term kgT'V -
M. Indeed, even if a sphere might actually experience a
nonzero roto-translational coupling, the term kgTR - M}, is
zero because a sphere has no intrinsic orientation.

The computation of the drift velocities requires the eval-
uation of the divergence of the various terms of the mobility
matrix. This is done here by using the RFD method presented
in Sec. V C, in Egs. (21) and (22). The values of M(h,0)
in the dummy position and orientation required by the RFD
method are obtained by interpolating the mobility matrix data
computed through hydrodynamic simulations and discussed in
Sec. IV. Hence, all our results will refer to a spheroid with
AR = 8.

A. Translational drift

We start our analysis by considering the z-component
of the translational drift velocity, i.e., the component normal

to the wall. Figure 14 shows <%> as a function of /4 and
parametric in 6. For symmetry, only the range 6 € [0, /2]
is investigated. We report both the direct computation of the
divergence terms in Egs. (26) and (27) from the mobility
data on the grid (triangles) and the approximation computed

through the RFD in Egs. (21) and (22) (circles). A quite good
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FIG. 14. Dimensionless drift velocity in direction z as a function of A, for
different @-values (colors). Circles represent the values computed through
the RFD (Eqgs. (21) and (22)) and triangles represent the values obtained by
a direct computation of the “convective terms” (see text). A positive value
means that the drift velocity z-component is directed away from the wall.
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FIG. 15. Dimensionless drift velocity in direction z as a function of 8 for two
different particle wall-distances.

agreement is found between the two methods of computa-
tion. The drift velocity in Fig. 14 is a positive monotonically
increasing function as h goes to zero in a range of 6 between
some critical value and n/2. For §-values lower than such a
critical angle (see, e.g., the case at 6 = 0), by decreasing the
particle-wall distance, the drift velocity component initially
decreases becoming negative, passes through a minimum, and
then becomes positive again. This behavior differs from that
of a sphere where a positive monotonically increasing drift as
the sphere-wall distance reduces is always found.*

Figure 15 reports <%> as a function of 8 for two values
of h. The trends show a complex non-monotonic behavior of
the z-component of drift velocity with respect to 6, with two
minima and a maximum in the interval 6 € [0, ]. In addition,
the red symbols (7 = 5.5) also show the existence of zero drift
velocity angles, which are not present for a closer particle-wall
distance.

In all the above results, the drift velocity has been calcu-
lated with complete Eq. (26). In Sec. IV, however, we showed
that the components of M}, are one order of magnitude smaller
than those of M. It is then interesting to quantify the error
committed by neglecting the term kgTR - M,(h,0) when eval-
uating the left-hand side of Eq. (26). In Fig. 16, we report the
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FIG. 16. Dimensionless drift velocity in direction z as a function of h, for
two different §-values. Square symbols represent the contribution of kp7'V
-M (h,0) only in Eq. (26), while circles are the total drift velocity along z.
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total drift velocity (circles) and the sole contribution of the
term kgTV - M ,(h,6) (squares). In other words, the circles in
Fig. 16 are the same data already reported in Fig. 14. It clearly
appears that neglecting the rotational divergence term, i.e.,
neglecting the matrix M}, induces a (relatively) large quanti-
tative error and, more importantly, also changes the qualitative
behavior of the drift velocity: notice, for instance, the absence
of the negative minimum for the case 6 = 0.

It is well known in the literature that a sphere diffusing
near a confining wall experiences a drift velocity only in the
direction normal to the wall, driving the particle away from
the wall.*® In contrast, a spheroidal particle experiences a drift
velocity in the x-direction as well. In Fig. 17, we report <AAL;‘>
as a function of 8 for four different values of /. Three zeros of
the “horizontal” drift velocity <AAL;‘> are found, at 6 = 0, /2
and r, for all the values of /. This component of the drift veloc-
ity also displays a minimum and a maximum, respectively, for
0 ~ m/4 and 37 /4. While for an arbitrary value of (%, ), the x-
component of the drift velocity is not zero and is comparable in
magnitude with the z-component, the symmetry of the trends
in Fig. 17 implies that

I Ar(h6)\
/0 <T> do = 0. (28)

As expected, there is no net drift velocity in directions different
from z. Finally, the component <AALI”> of the drift is found to
be identically zero in the whole intervals of 4 and 6.

B. Rotational drift

We now turn to the analysis of the rotational drift velocity.

In Fig. 18, we report the rotational drift around the z-direction,

<APZ
At

= 4.5, the trend shows a minimum and a maximum at @ = 0
and 6 = m. In contrast, as the particle-wall distance h de-
creases, <AA—plz> becomes a linear function of € in an enlarging

> , as a function of @ for three different values of /4. For &

range of . It is important to notice that, for 6 < x/2, the
orientational drift velocity is negative, whereas for 8 > m/2,
it is positive. This means that p always rotates so that its z-
component tends to become zero, i.e., the leading edge of the
spheroid is in any event attracted towards 6 = /2.
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FIG. 17. Dimensionless drift velocity in direction x as a function of 8, for
different h-values.
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FIG. 18. Dimensionless orientational drift velocity in direction z as a func-
tion of @, for different h-values. Because of the change of sign of the
orientational drift velocity around 6 = 7r/2, the spheroid tends to stay parallel
to the wall (see text).
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FIG. 19. Dimensionless orientational drift velocity in direction x as a func-
tion of 0, for different h-values.

In Fig. 19, we plot <AA”—I"> as a function of 6 for three
different h-values. The x-component of the orientational drift
velocity is negative in the whole interval 6 € [0,x]. Similarly
to what occurs for the z-component of the rotational drift
velocity, there is no change in the qualitative behavior of
<%> as the particle-wall distance is reduced. For all the
h-values investigated, a minimum in 6 = % shows. Notice that,
for whatever h, by taking the average of <W> over the
whole unit sphere, there is no net orientational drift velocity
in the x-direction.

Finally, similarly to what happens for the y-component of
the translational drift velocity analyzed in Sec. VI B, it can be

shown that <AAL?> isidentically zero in the whole interval (4, 6).

VIl. CONCLUSIONS

In this paper, we have studied the hydrodynamics and
the Brownian motions of a spheroid suspended in a quies-
cent Newtonian fluid near a rigid wall. We have carried out
Finite Element Method (FEM) simulations to characterize the
hydrodynamic interactions of a spheroid with an infinite plane
wall. In particular, we have computed the mobility matrix in
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the range of positions and orientations covering all possible
particle-wall configurations. We have found that the transla-
tional mobility is significantly reduced as the spheroid-wall
distance decreases, especially when the particle is oriented
parallel to the wall; on the other hand, the rotational mobility
is reduced only when the particle-wall distance is very small,
less than the spheroid major semi-axis length. The presence of
the wall also induces a rotational-translational coupling with
a complex dependence on both the particle-wall distance and
orientation.

We also studied the Brownian motion of a spheroidal
particle in the presence of a wall, by formulating a discretized
version of the appropriate Langevin equation. The presence
of particle-wall hydrodynamic interactions leads to additional
convective terms in the Langevin equation, which are required
to recover the correct equilibrium distribution. These convec-
tive terms depend on the spatial and orientational divergences
of the mobility matrix and induce translational and rotational
drift velocities. Unlike the case of spherical particles, the
translational drift velocity is not a strictly positive monotonic
increasing function as the spheroid approaches the wall and,
for some configurations, it can also become negative, pointing
towards the wall. The orientational drift velocities depend on
the orientation angle but remain essentially unchanged as the
spheroid approaches the wall. The net effect (if small) of the
orientational drift is to align the spheroid parallel to the wall.
The results presented in this paper illustrate that the hydro-
dynamics and the Brownian motions of a spheroid near a rigid
wall significantly differ from those of a sphere-wall system.

In concluding, we would like to emphasize that the
Langevin equation presented in this paper (Secs. V A and
V B), together with the numerical recipes for calculating the
“convective terms” (Sec. V C), is in no way limited to the situa-
tion tackled here, i.e., for a spheroid in the presence of a single
plane wall, but is completely general, for an axisymmetric
Brownian particle. The effects of a second infinite parallel wall
and of other non-uniaxial confinements (e.g., near to corners),
which may be of interest in microfluidics applications, can then
(and hopefully will) be investigated, by the same equations, in
future work.
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APPENDIX A: EVALUATION OF ORIENTATIONAL
DIVERGENCE TERMS IN THE LANGEVIN EQUATION
THROUGH RANDOM FINITE DIFFERENCE
APPROXIMATION

In this Appendix, we give the proof of Eq. (22). Let us
consider an arbitrary small number €. It is possible to express
the matrix A(r, p + eAq X p) as a Taylor series around the
vector p = p,,. The correct gradient operator on the unit sphere
for a Taylor expansion has been shown to be*
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0
V,=pX_—xX Al
p=PX G XP (A1)
that can be alternatively expressed as
0 0
V,=— — ). A2

The second term is required to ensure that the gradient is tangent to the unit sphere. By writing the tensor A(r, p + €Agq
x p) as a Taylor expansion around a generic orientation vector p = p,, we get

A(r, po + €Ag X pg) = A(r, po) + €[(V, - (Ag X p)A(T, p)llp=p, + O(€). (A3)
Substituting this expression in the right-hand side of Eq. (22), we obtain
L1
lim = ((A(r, po+ €Aq X py) - Ag — A(r, po) - Ag)) = ([(V}, - (Ag X p)A(F, P)llp=p, - Ag) + O(€7). (A4)

Now we can rewrite the right-hand side by components adopting Einstein notation and neglecting the O(e?) terms,

9 d
{[5_171 i (p”(g_pn)} €ijkAg;Pk (Alm(l’,p))}

In this equation, &; i is the Levi-Civita symbol and the derivatives with respect to p; and p,, are applied to A;,(r, p) only; the
whole expression is evaluated at p = p,,. From the definition of the moments of Aq reported in Eqgs. (23), it follows that

<ACIjAQm> = 6jm- (A6)

([(V), - (Ag X p)A(r, P)llp=p, - Aq) = Agme

P=P0

. (AS)

Thus, the right-hand side of Eq. (A4) becomes

% [{&ijkpi (ALj(r, P))Yo=p,| € — i (Pn%) [{&ijkpi (ALj(r, P))}Hp=p,] €:- (A7)

By permutating the indices in the Levi-Civita operator, the first term becomes

0 0
—— [{ejipk (Ajr, P)Yp=pler = |[px o= | - A@D)|| = R-AW, P)p=p, (A8)
opi op p=po
The second term vanishes identically because €;x;prp; = 0.
In conclusion, we obtain
o1
lim = ((A(r, py + €Ag X py) - Aq — A(r, po) - AQ)) = R - A(r, p)lp=p,- (A9)

Since this procedure is valid for any arbitrary vector p,, Eq. (A9) holds for all vectors p.

APPENDIX B: ON THE p-NORM PRESERVING TERM IN THE LANGEVIN EQUATION

In this Appendix, we explicitly compute the average of the term %A@ (1) - [p(t)A@p(t) — A®g(1)p(t)] appearing in Eq. (14).
In addition, we show that the above term recovers the orientational drift discussed by Cobb and Butler®> when considering the
diffusion of an unconfined thin rod.
We start by considering the definition of A®g(¢); according to Eq. (18) we have
A@p(t) = \2kgT At [m! - AN| + m, - AN,], (B1)

where we define the matrices m! and m, as follows:

my  my
m= [ . } (B2)
m, m;

that is, to say, as submatrices of the matrix m. Notice that, for clarity, we dropped the dependencies of m on r(r) and p(¢). By
substituting Eq. (B1) in (1A@(1) - (p(1)A@(t) — AO5(1)p(t))), we obtain

kgTAtp - {(m} - ANy + my - AN>)(m. - ANy + my - AN>)) — kgTAtp {(m} - ANy + ms - AN>)?) . (B3)
Rewriting the above expression in indicial notation

+kBTA[ Di <(mT ~AN|’]’ + mz,,-jANQ,j)(mZ’klANl,l + mz,klAN2,1)> (4%

X, 1]

—kBTAl Pk <(mT -ANijT ANL] + mxT,ijANl,jm;:ilANll + I’)’lg’ijANz,jmlilANz’l» (4% (B4)

X, 1] X,il
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(with e the unit vectors of the fixed frame), we now use
average properties (20) of N; and N to obtain

T T
kgT At pi(my ;;my o+ mo i mo,k j)ex

— kgTAt pi(m] ;m ; + ma ijmyij)ex (BS)

X, 1]

or, in tensor notation,

<§A®B(r) - P()A®(1) - AGB(r>p<r>)>

= kgTAtp - (mz - My + my - my)
- kBTAtp(mf Tmy+mymy). (B6)

If we now consider the diffusion of an unconfined thin rod,
it is my = 0, because there is no roto-translational coupling,
while m, = VM, I, where M, is the rotational mobility of the
rod perpendicular to its major axis. Inserting these expressions
into Eq. (B6), we obtain

<%A®B(t) - (p()AOR(1) - A(")B(I)P(t))>

= kgTM,Atp -1 — kgT M, At pTr(I)
= —2ksT M,Atp, (B7)

which is the result obtained by Cobb and Butler” for an
unconfined rod.
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