40 research outputs found

    Acoustic cardiac triggering: a practical solution for synchronization and gating of cardiovascular magnetic resonance at 7 Tesla

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To demonstrate the applicability of acoustic cardiac triggering (ACT) for imaging of the heart at ultrahigh magnetic fields (7.0 T) by comparing phonocardiogram, conventional vector electrocardiogram (ECG) and traditional pulse oximetry (POX) triggered 2D CINE acquisitions together with (i) a qualitative image quality analysis, (ii) an assessment of the left ventricular function parameter and (iii) an examination of trigger reliability and trigger detection variance derived from the signal waveforms.</p> <p>Results</p> <p>ECG was susceptible to severe distortions at 7.0 T. POX and ACT provided waveforms free of interferences from electromagnetic fields or from magneto-hydrodynamic effects. Frequent R-wave mis-registration occurred in ECG-triggered acquisitions with a failure rate of up to 30% resulting in cardiac motion induced artifacts. ACT and POX triggering produced images free of cardiac motion artefacts. ECG showed a severe jitter in the R-wave detection. POX also showed a trigger jitter of approximately Δt = 72 ms which is equivalent to two cardiac phases. ACT showed a jitter of approximately Δt = 5 ms only. ECG waveforms revealed a standard deviation for the cardiac trigger offset larger than that observed for ACT or POX waveforms.</p> <p>Image quality assessment showed that ACT substantially improved image quality as compared to ECG (image quality score at end-diastole: ECG = 1.7 ± 0.5, ACT = 2.4 ± 0.5, p = 0.04) while the comparison between ECG vs. POX gated acquisitions showed no significant differences in image quality (image quality score: ECG = 1.7 ± 0.5, POX = 2.0 ± 0.5, p = 0.34).</p> <p>Conclusions</p> <p>The applicability of acoustic triggering for cardiac CINE imaging at 7.0 T was demonstrated. ACT's trigger reliability and fidelity are superior to that of ECG and POX. ACT promises to be beneficial for cardiovascular magnetic resonance at ultra-high field strengths including 7.0 T.</p

    Oscillating steady states

    No full text
    The signal formation and properties of steady-state free precession (SSFP) in combination with alternating RF pulse phases or alternating spin precession is analyzed. Simulations and experiments demonstrate that the amplitudes of SSFP echo paths are significantly influenced by application of alternating phases either via the exciting RF pulse or via some external mechanism producing alternating spin precession. The influence of alternating phases on echo amplitudes is different for different echo paths. The primary SSFP echo paths F0− and F0+ exhibit a signal reduction whereas higher-order echoes F−1− and F1+ show a signal increase upon application of oscillating phases. This behavior can be described using a simple perturbation theory applied to the frequency response profile of balanced SSFP combined with a final signal integration over one balanced SSFP band. The high sensitivity of SSFP echo amplitudes to alternating RF pulse phases or precession is exemplarily used to detect and visualize propagating transverse acoustic shear waves. Detection of flow or alternating currents are further possibilities to apply this unique feature of SSFP

    Young Investigator Awards Finalist: Balanced Alternating Steady-State Elastography

    No full text
    A novel, balanced alternating steady-state elastography (BASEL) technique is proposed for visualization of propagating transverse acoustic shear waves. A conventional balanced steady-state free precession (b-SSFP) sequence was modified such that the dynamic equilibrium becomes very sensitive to small cyclic displacements, generating two distinct &ndash; alternating &ndash; steady states. Experiments with tissue-like agarose gel phantoms demonstrate that the novel sequence offers a scan time reduction of at least one order of magnitude for comparable sensitivity compared to standard MRE methods

    Balanced alternating steady-state elastography

    No full text
    A conventional balanced steady-state free precession (b-SSFP) sequence scheme was modified such that the dynamic equilibrium becomes very sensitive to small cyclic displacements, generating two distinct and alternating steady states. This novel technique is proposed for the visualization of propagating transverse acoustic shear waves, as used in MR elastography (MRE) to determine the mechanical properties of materials or in vivo soft tissue. Experiments with tissue-like agarose gel phantoms and simulations demonstrate that the novel sequence offers an increase in phase sensitivity by about one order in magnitude compared to standard motion-encoding methods. In addition, the new method benefits from the very short acquisition times achieved by b-SSFP protocols

    Magnetic resonance imaging of low-grade and high-grade gliomas at 7 Tesla

    No full text

    Time-interleaved acquisition of modes:an analysis of SAR and image contrast implications

    No full text
    As the magnetic field strength and therefore the operational frequency in MRI are increased, the radiofrequency wavelength approaches the size of the human head/body, resulting in wave effects which cause signal decreases and dropouts. Especially, whole-body imaging at 7 T and higher is therefore challenging. Recently, an acquisition scheme called time-interleaved acquisition of modes has been proposed to tackle the inhomogeneity problems in high-field MRI. The basic premise is to excite two (or more) different B 1+ modes using static radiofrequency shimming in an interleaved acquisition, where the complementary radiofrequency patterns of the two modes can be exploited to improve overall signal homogeneity. In this work, the impact of time-interleaved acquisition of mode on image contrast as well as on time-averaged specific absorption rate is addressed in detail. Time-interleaved acquisition of mode is superior in B 1+ homogeneity compared with conventional radiofrequency shimming while being highly specific absorption rate efficient. Time-interleaved acquisition of modes can enable almost homogeneous high-field imaging throughout the entire field of view in PD, T(2) , and T(2) *-weighted imaging and, if a specified homogeneity criterion is met, in T(1) -weighted imaging as well
    corecore