1,747 research outputs found

    A note on heat and mass transfer from a sphere in Stokes\ud flow at low Péclet number

    Get PDF
    We consider the low Péclet number, Pe ≪ 1, asymptotic solution for steady-state heat and mass transfer from a sphere immersed in Stokes flow with a Robin boundary condition on its surface, representing Newton cooling or a first-order chemical reaction. The application of van Dyke’s rule up to terms of O(Pe3) shows that the O(Pe3 log Pe) terms in the expression for the average Nusselt/Sherwood number are double those previously derived in the literature. Inclusion of the O(Pe3) terms is shown to increase significantly the range of validity of the expansion

    Nonuniqueness in a minimal model for cell motility

    Get PDF
    Two–phase flow models have been used previously to model cell motility, however these have rapidly become very complicated, including many physical processes, and are opaque. Here we demonstrate that even the simplest one–dimensional, two–phase, poroviscous, reactive flow model displays a number of behaviours relevant to cell crawling. We present stability analyses that show that an asymmetric perturbation is required to cause a spatially uniform, stationary strip of cytoplasm to move, which is relevant to cell polarization. Our numerical simulations identify qualitatively distinct families of travelling–wave solution that co–exist at certain parameter values. Within each family, the crawling speed of the strip has a bell–shaped dependence on the adhesion strength. The model captures the experimentally observed behaviour that cells crawl quickest at intermediate adhesion strengths, when the substrate is neither too sticky nor too slippy

    ‘Y’all don’t wanna hear me, you just wanna dance’: A cognitive approach to listener attention in OutKast’s ‘Hey Ya!’

    Get PDF
    In his article on ‘musical stylistics’, Morini demonstrates (with reference to a song by Kate Bush) that lyrical and musical content can work in harmony to produce consonant meanings and stylistic effects. Our article develops Morini’s musical-stylistic approach by employing cognitive theories to track how music and lyrics can work together in a different way. ‘Hey Ya!’ by OutKast (2003) employs a knowing dissonance between the song’s lyrical content and its rhythm and key, the reconciliation of which leads to a drastic and surprising re-reading of the song’s meaning, often documented in online articles and listener discussions. Combining a cognitive poetic approach with theories of ‘habituation’ and ‘fluency’ in music psychology, our analysis centres around the shifting position of the song’s lyrics within the Figure and Ground of the composition, in order to account for listener (in)attentiveness. This leads to a consideration of the attentiveness of readers to lyrical content in music more generally, and its implications for stylistic analysis of the genre

    Pebble bed: reflector treatment and pressure\ud velocity coupling

    Get PDF
    In this report, we describe some models and numerical methods used to simulate the flow and temperature in a pebble bed modular nuclear reactor. The reactor core is filled with around 450000 spheres containing low enriched uranium and helium is forced through these hot pebbles to cool the system down. The group first investigated the flow model in the pebbles. Numerical aspects were then considered to tackle difficulties encountered with the flow simulation and the temperature inside the pebbles. Numerical schemes are presented that can significantly improve the accuracy of the computed results

    Self-organization with equilibration: a model for the intermediate phase in rigidity percolation

    Full text link
    Recent experimental results for covalent glasses suggest the existence of an intermediate phase attributed to the self-organization of the glass network resulting from the tendency to minimize its internal stress. However, the exact nature of this experimentally measured phase remains unclear. We modify a previously proposed model of self-organization by generating a uniform sampling of stress-free networks. In our model, studied on a diluted triangular lattice, an unusual intermediate phase appears, in which both rigid and floppy networks have a chance to occur, a result also observed in a related model on a Bethe lattice by Barre et al. [Phys. Rev. Lett. 94, 208701 (2005)]. Our results for the bond-configurational entropy of self-organized networks, which turns out to be only about 2% lower than that of random networks, suggest that a self-organized intermediate phase could be common in systems near the rigidity percolation threshold.Comment: 9 pages, 6 figure

    Wireless recording of the calls of Rousettus aegyptiacus and their reproduction using electrostatic transducers

    Get PDF
    Bats are capable of imaging their surroundings in great detail using echolocation. To apply similar methods to human engineering systems requires the capability to measure and recreate the signals used, and to understand the processing applied to returning echoes. In this work, the emitted and reflected echolocation signals of Rousettus aegyptiacus are recorded while the bat is in flight, using a wireless sensor mounted on the bat. The sensor is designed to replicate the acoustic gain control which bats are known to use, applying a gain to returning echoes that is dependent on the incurred time delay. Employing this technique allows emitted and reflected echolocation calls, which have a wide dynamic range, to be recorded. The recorded echoes demonstrate the complexity of environment reconstruction using echolocation. The sensor is also used to make accurate recordings of the emitted calls, and these calls are recreated in the laboratory using custom-built wideband electrostatic transducers, allied with a spectral equalization technique. This technique is further demonstrated by recreating multi-harmonic bioinspired FM chirps. The ability to record and accurately synthesize echolocation calls enables the exploitation of biological signals in human engineering systems for sonar, materials characterization and imaging

    Political brand identity: an examination of the complexities of Conservative brand and internal market engagement during the 2010 UK General Election campaign

    Get PDF
    This paper seeks to build an understanding of the importance of internal communications when building a strong political brand. Using Kapferer’s brand prism as a conceptual framework, the paper explores UK Conservative Party members’ attitudes towards the development of the Conservative brand as personified by David Cameron. There are clear implications for political strategists as the findings suggest that it is crucial to engage the internal market in the co-creation of the marketing communications strategy for as brand evangelists they interpret the brand promise at the local level
    corecore