65,949 research outputs found

    Sustained magneto-shear instabilities in the solar tachocline

    Get PDF
    We present nonlinear three-dimensional simulations of the stably-stratified portion of the solar tachocline in which the rotational shear is maintained by mechanical forcing. When a broad toroidal field profile is specified as an initial condition, a clam-shell instability ensues which is similar to the freely-evolving cases studied previously. After the initial nonlinear saturation, the residual mean fields are apparently too weak to sustain the instability indefinitely. However, when a mean poloidal field is imposed in addition to the rotational shear, a statistically-steady state is achieved in which the clam-shell instability is operating continually. This state is characterized by a quasi-periodic exchange of energy between the mean toroidal field and the instability mode with a longitudinal wavenumber m=1. This quasi-periodic behavior has a timescale of several years and may have implications for tachocline dynamics and field emergence patterns throughout the solar activity cycle.Comment: 5 pages, 3 figures (eps format). Fig. 3 also in jpg format. Submitted to Astrophysical Journal Letter

    DO SPORTFISH CONSUMPTION ADVISORIES AFFECT RESERVOIR ANGLERS' SITE CHOICE?

    Get PDF
    Increasing numbers of freshwater ecosystems have had sportfish consumption advisories posted in recent years. Advisories are sometimes issued in lieu of environmental remediation if they are considered more cost-effective than "cleaning up" the resource, but this approach assumes that anglers adjust behavior in response to the warning. Previous studies, however, suggest that compliance with advisories can be quite low. In contrast, this study measures a statistically significant response by reservoir anglers to consumption advisories. In particular, anglers are less likely to choose to visit a reservoir with an advisory than a similar reservoir without an advisory. Furthermore, the economic losses due to advisories are quantified for anglers in two regions of Tennessee.Resource /Energy Economics and Policy,

    Multiphoton resonances for all-optical quantum logic with multiple cavities

    Get PDF
    We develop a theory for the interaction of multilevel atoms with multimode cavities yielding cavity-enhanced multiphoton resonances. The locations of the resonances are predicted from the use of effective two- and three-level Hamiltonians. As an application we show that quantum gates can be realized when photonic qubits are encoded on the cavity modes in arrangements where ancilla atoms transit the cavity. The fidelity of operations is increased by conditional measurements on the atom and by the use of a selected, dual-rail, Hilbert space. A universal set of gates is proposed, including the Fredkin gate and iSWAP operation; the system seems promising for scalability

    The Terwilliger algebra of an almost-bipartite P- and Q-polynomial association scheme

    Get PDF
    Let YY denote a DD-class symmetric association scheme with D3D \geq 3, and suppose YY is almost-bipartite P- and Q-polynomial. Let xx denote a vertex of YY and let T=T(x)T=T(x) denote the corresponding Terwilliger algebra. We prove that any irreducible TT-module WW is both thin and dual thin in the sense of Terwilliger. We produce two bases for WW and describe the action of TT on these bases. We prove that the isomorphism class of WW as a TT-module is determined by two parameters, the dual endpoint and diameter of WW. We find a recurrence which gives the multiplicities with which the irreducible TT-modules occur in the standard module. We compute this multiplicity for those irreducible TT-modules which have diameter at least D3D-3.Comment: 22 page

    Hybrid stars that masquerade as neutron stars

    Full text link
    We show that a hybrid (nuclear + quark matter) star can have a mass-radius relationship very similar to that predicted for a star made of purely nucleonic matter. We show this for a generic parameterization of the quark matter equation of state, and also for an MIT bag model, each including a phenomenological correction based on gluonic corrections to the equation of state. We obtain hybrid stars as heavy as 2 M_solar for reasonable values of the bag model parameters. For nuclear matter, we use the equation of state calculated by Akmal, Pandharipande, and Ravenhall using many-body techniques. Both mixed and homogeneous phases of nuclear and quark matter are considered.Comment: 22 pages, LaTeX. Extra figure and explanation adde

    Virus-transformed pre-B cells show ordered activation but not inactivation of immunoglobulin gene rearrangement and transcription

    Get PDF
    Virus-transformed pre-B cells undergo ordered immunoglobulin (Ig) gene rearrangements during culture. We devised a series of highly sensitive polymerase chain reaction assays for Ig gene rearrangement and unrearranged Ig gene segment transcription to study both the possible relationship between these processes in cultured pre-B cells and the role played by heavy (H) chain (mu) protein in regulating gene rearrangement. Our analysis of pre-B cell cultures representing various stages of maturity revealed that transcription of each germline Ig locus precedes or is coincident with its rearrangement. Cell lines containing one functional rearranged H chain allele, however, continue to transcribe and to rearrange the allelic, unrearranged H chain locus. These cell lines appear to initiate but not terminate rearrangement events and therefore provide information about the requirements for activating rearrangement but not about allelic exclusion mechanisms

    Quantum Channel Capacities Per Unit Cost

    Get PDF
    Communication over a noisy channel is often conducted in a setting in which different input symbols to the channel incur a certain cost. For example, for bosonic quantum channels, the cost associated with an input state is the number of photons, which is proportional to the energy consumed. In such a setting, it is often useful to know the maximum amount of information that can be reliably transmitted per cost incurred. This is known as the capacity per unit cost. In this paper, we generalize the capacity per unit cost to various communication tasks involving a quantum channel such as classical communication, entanglement-assisted classical communication, private communication, and quantum communication. For each task, we define the corresponding capacity per unit cost and derive a formula for it analogous to that of the usual capacity. Furthermore, for the special and natural case in which there is a zero-cost state, we obtain expressions in terms of an optimized relative entropy involving the zero-cost state. For each communication task, we construct an explicit pulse-position-modulation coding scheme that achieves the capacity per unit cost. Finally, we compute capacities per unit cost for various bosonic Gaussian channels and introduce the notion of a blocklength constraint as a proposed solution to the long-standing issue of infinite capacities per unit cost. This motivates the idea of a blocklength-cost duality, on which we elaborate in depth.Comment: v3: 18 pages, 2 figure
    corecore