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Abstract

Let Y denote aD-class symmetric association scheme with> 3, and supposé& is almost-
bipartite P- and Q-polynomial. Latdenote a vertex of and letT = T (x) denote the corresponding
Terwilliger algebra. We prove that any irreduciliflenoduleW is both thin and dual thin in the sense
of Terwilliger. We produce two bases féf and describe the action @f on these bases. We prove
that the isomorphism class @f as a7-module is determined by two parameters, the dual endpoint
and diameter of¥. We find a recurrence which gives the multiplicities with which the irredudible
modules occur in the standard module. We compute this multiplicity for those irreddtiledules
which have diameter at least — 3.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The Terwilliger algebra of a commutative association scheme was introdud@@lin
This algebra is a finite-dimensional, semisim@lalgebra, and is noncommutative in gen-
eral. The Terwilliger algebra has been used to study P- and Q-polynomial scfef8is
group schemef, 3], strongly regular graphi7], Doob schemef1], and schemes over
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the Galois rings of characteristic foldr7]. Other work involving this algebra can be found
in [6-9,11,13-16,18,25,26,28]

The Terwilliger algebra is particularly well-suited for studying P- and Q-polynomial
schemes; nevertheless, it is apparent fii@8] that the intersection numbers of these
schemes do not completely determine the structure of the algebra. In this article, we con-
sider the Terwilliger algebra of an almost-bipartite P- and Q-polynomial scheme. We show
that with the added almost-bipartite assumption, the intersection numbers of the scheme
completely determine the structure of the algebra.

To describe our results, l&t= (X, {R;}o<; < p) denote a symmetric association scheme
with D > 3. Suppos€’ is almost-bipartite P- and Q-polynomial. Fix anye X, and let
T = T (x) denote the Terwilliger algebra aof with respect tax. T acts faithfully on the
vector spac€* by matrix multiplication; we refer t&€* as thestandard moduleSinceT
is semisimpleCX decomposes into a direct sum of irreducillenodules.

Let W denote an irreducibl&-module contained it . We show thaW is thin and dual
thin in the sense of Terwilliger (Lemma 10.3). We produce two baseWfarith respect
to which the action off" is particularly simple (Theorem 8.1). To describe this action, we
use two sets of scalars, tivgersection numbersf W and thedual intersection numbers
of W. We compute these scalars in terms of the eigenvalu&s tife dual eigenvalues of
Y, and two additional parameters, called theal endpoinanddiameterof W (Theorems
11.4, 12.4). We show that the dual endpoint and diamet@r determine its isomorphism
class as &-module (Theorem 14.1).

Combining our above results, we find a recurrence which gives the multiplicities with
which the irreducibl@’-modules occur it X (Theorem 16.6). We compute this multiplicity
for those irreduciblg’-modules which have diameter at le@st- 3. (Example 16.8).

In a future paper, we intend to use these results to study the subconstituents of an almost-
bipartite P- and Q-polynomial scheme. We hope this will produce a classification of these
schemes. Our work is closely related to that of Curtin concerning 2-thin distance-regular

graphg8].

2. Association schemes

Definition 2.1. By a symmetric association scherfe schemdor short) we mean a pair
Y = (X, {Ri}o<i<p)» WhereX is a nonempty finite set) is a nonnegative integer, and
Ro, ..., Rp are nonempty subsets &f x X such that

() {Ri}o<i<p isapartition ofX x X;
(i) Ro={xx|x e X};
(iiiy R!= R; for 0<i< D, whereR! = {yx | xy € R;};
(iv) Forallh,i, j (O<h,i, j<D),andforallx, y € X such thatty € Ry, the scalar

pli =z € X|xz € R;, andzy € R;}|

is independent af, y.
The constan@f/ are called théntersection numbers of Y



J.S. Caughman et al. / Discrete Mathematics 292 (2005) 17 -44 19

For the rest of this section, I&t= (X, {R;}o<; < p) denote a scheme. We begin with a few
comments about the intersection number¥ ofor all integers (0<i < D), setk; := pg,
and note thak; £ 0 sinceR; is nonempty. We refer tb; as theith valencyof Y. Observe
that p?, = 6;jk; (0<i, j<D).

We now recall the Bose—Mesner algebralofLet Maty (C) denote theC-algebra of
matrices with entries i, where the rows and columns are indexedbyror each integer
i (0<i<D),letA; denote the matrix in Mat(C) with xy-entry

1 ifxyeR;

(Ai)xy={0 IfxygéR, (-x’yex)~ (1)

We refer toA; as theith associate matrix of YBy Definition 2.1, the associate matrices
satisfy: (i) Ao = I, wherel! is the identity matrix in Mag (C); (ii) the conjugate-transpose
Z} =A; (0<i<D);(iii) Ag+A1+---+Ap=J,whereJ isthe all 1's matrix in Maf (C);
(V) AiA; = Yio pliAn (0<i, j< D).

It follows from (i)—(iv) that Ao, ..., Ap form a basis for a subalgebnd of Maty (C).
M is known as thd8ose—Mesner algebra of ©bserve thad/ is commutative, since the
associate matrices are symmetric.

By Brouwer et al[4, p. 45] the algebraV has a second basky, ..., Ep satisfying:
() Eo = |X|"1J; (i) E; = E; (0<i<D; (iii) E;E; = 6;E; (0<i, j<D); (V) Eo +
E1+---+ Ep = 1. We refer toE; as theith primitive idempotent of Yor 0<i < D. For
convenience we defing; := 0 fori > D andi <O.

For all integers (0<i < D), setm; := rank(E;), and note that:; # 0. We refer tan;
as theith multiplicity of Y.

SinceAy, ..., Ap andEy, ..., Ep are both bases fay, there exist complex scalars
pi(j). qi(j) (0<i, j < D) which satisfy

D
A=Y pi()HE; (0<i<D), (2)
j=0
D
Ei=|XI"") " qi()A; (0<i<D). (3)
j=0

By Bannai and 1td2, pp. 59, 63]the p; (j), ¢;(j) are real. We refer te; (j) (resp.¢;(j))
as thejth eigenvalugresp. jth dual eigenvalugassociated with4; (resp.E;). By Bannai
and Ito[2, p. 63] the eigenvalues and dual eigenvalues satisfy

pi(j) _ q;(i)

(0<i, j< D).
ki m;

We now recall the Krein parameters Bf Observe that; o A; = §;;A; (0<i, j<D),
whereo denotes the entry-wise matrix product. It follows thidtis closed undep, so
there exist complex scalaq,i‘;j satisfyingE; o E; = |X| 231, q[‘j E; (0<i, j<D).The
constants;l.hj are called th&rein parameterof Y. By Bannai and Itd2, pp. 67—-69] the
Krein parameters are real, aqg =0;jm; (0<i, j<D).
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We now recall the dual Bose—Mesner algebrd& of-or the rest of this section, fix any
x € X.Foreachinteger (0<i < D), letEf=E] (x) denote the diagonal matrix in MatC)
with yy-entry

o 1 ifxyeR;

We refertoE as thethdual idempotent of with respectto xXFor convenience, sét* := 0

if i > D ori < 0. Fromthe definition, the dual idempotents satisny_(’ifz Er (0<i<D),
(i) EYET =0i;E; (0<i, j<D); (i) E§+ Ef+---+Ep=1.

It follows that the matrices:s, . .., EJ, form a basis for a subalgebid* = M*(x) of
Maty (C). M* is known as thelual Bose—Mesner algebra of Y with respect t@kserve
that M* is commutative since the dual idempotents are diagonal.

For each integer (0<i < D), let A7 = A7 (x) denote the diagonal matrix in Ma(C)
with yy-entry

(AD)yy = IXI(EDyxy (v € X). (5)

We refer toA} as theith dual associate matrix of Y with respect toGombining (2), (3)
with (4), (5),

D
AF=>"q(HE; (0<i<D), (6)
j=0
D
Ef =|XI72)" pi(HAT (0<i<D). (7
j=0
It follows that A, ..., A7, form a second basis fai*.

From the definitions, the dual associate matrices satisfyA§i)= I, (ii) A_j.‘t =AY
(O<i<D); (i) A7AT = Z}?:Oq[‘jA;‘l (0<i, j<D);(iv) A§ + AT +--- + A} = | X|E{.

3. The Terwilliger algebra and its modules

LetY = (X, {Ri}o<;<p) denote a scheme. Fix anye X, and writeM* = M*(x).
Let T = T (x) denote the subalgebra of MatC) generated by andM*. We callT the
Terwilliger algebra of Y with respect ta x

In[23, Lemma 3.2]it is shown that for all integerk, i, j (0<h, i, j < D),

pl;=0 ifandonlyif EfA;Ej=0, (8)
g =0 ifandonlyif EA%E, =0, ©)

whereA? = A¥(x), Ef = Ef(x) (0<i<D).
Let V denote the vector spaé&® (column vectors), where the coordinates are indexed
by X. Then Maf (C) acts onV by left multiplication. We endow with the inner product
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(,) satisfying(u, v) := u'v for all u,v € V. Observe thaV = Zf;o E;V (orthogonal
direct sum). Similarly, we have the decompositioa: ZiD:o E'V (orthogonal direct sum).
By a T-module we mean a subspad® of V such thatT W € W. We refer toV itself
as thestandard moduléor 7. Let W, W’ denoteT -modules. By a-module isomorphism

from W to W/, we mean an isomorphism of vector spagesW — W' such that

(Bp —pB)W =0 (VB e T).

W, W' are said to b@-isomorphicwhenever there exists B-module isomorphism from
W to W'. A T-moduleW is said to bdrreducible wheneverW = 0 andW contains no
T-modules other than 0 anid.

Becausd' is closed under the conjugate-transpose rfaig,semisimple. It follows that
for any T-moduleW and anyT'-moduleU C W there exists a uniquEé-moduleU’ € W
such that

W =U + U’ (orthogonal direct sum

Moreover,W is an orthogonal direct sum of irreducitdiemodules.
Now let W denote an irreducibl&-module. Observe that

W= Z E'W (orthogonal direct sum), (20)

where the sum is taken over all the indice€0<i < D) such thatEFW # 0. We set
d:=|{i | E;W # 0}| — 1, and observe that the dimensionWéfis at least/ + 1. We refer
to d as thediameterof W. W is said to bethin whenever dimE; W) <1 (0<i< D). Note
that W is thin if and only if the diameter o equals diniW) — 1.

Similarly,

W =Y E;W (orthogonal direct sum)

where the sum is taken over all the indi¢e® <i < D) such thatt; W # 0. We setl* :=
|{i | E;W # 0}| — 1, and observe that the dimensionWifis at least/* + 1. We refer tad*
as thedual diametef W. W is said to bedual thinwhenever dinge; W) <1 (0<i < D).
Note thatW is dual thin if and only if the dual diameter & equals diniw) — 1.

We wish to emphasize the following point, which follows immediately from the above
discussion.

Lemma 3.1. LetY =(X, {R;}o<; < p) denote ascheme. Fixanye X,andwriteT =T (x).
Let W denote an irreducible T-module that is both thin and dual thin. Then the diameter
and dual diameter of W are equal

4. The P-polynomial property

LetY =(X, {Ri}o<; < p) denote a scheme. We say tliiés P-polynomialwith respect to
the orderingRo, ..., Rp of the associate classes) whenever for all integers; (0<#h, i,
J<D),

pl-hj =0if one of#h, i, j is greater than the sum of the other two (12)
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pf‘j # 0 if one ofh, i, j equals the sum of the other two (12)

Forthe rest of this section, assuihis P-polynomial. We abbreviate := Pii—l (1<i<D),
ai := pl; (0<i<D), b := p}; ., (0<i<D — 1), and definep := 0, bp := 0. We note
thatag = 0 andc; = 1. By Bannai and It¢g2, Proposition I11.1.2]

_boby---bi—1
- c1C2 -+ - Cj

ki O<igD).

Of particular interest are the matrik := A1 and the scalar8; := p1(i) (0<i<D). It
follows from (2) that

AE; =0,E; (0<i<D). (13)
It is shown in[2, p. 190]that

0: #0; ifi#j (0<i,j<D), (14)

and also thatA; = v;(A) (0<i < D), wherev; is a polynomial with real coefficients and
degree exactly. In particular,A multiplicatively generated/, the Bose—Mesner algebra.
By (2), it follows that

pi(j)=vi(0;) (O<i, j<D).

We now recall the raising, lowering, and flat matricesrofFix anyx € X, and write
Ef = E¥(x) (0<i< D). Define matrice® = R(x), F = F(x), L= L(x) by

D D D
R:=YE,AE}., F:=) EfAE}. L:=) E},AE}. (15)
i=0 i=0 i=0
Note thatR, F, andL have real entries by (1) and (4). Also, observe thias symmetric
andR = L'. By (8) and (11),
A=R+F+1L. (16)
Using (15) and recalling™ ; =0, £, = 0, we find

RE! = E} R (-1<i<D), FE;=EF (0<i<D),

LE} =E}f ;L (0<i<D+1). (17)

5. The T-modules of P-polynomial schemes

In this section, we describe the irreducitilenodules of P-polynomial schemes.

LetY = (X, {Ri}o<; < p) denote a scheme which is P-polynomial with respect to the
orderingRy, ..., Rp of the associate classes. Fix anyg X and writeT = T (x). Let W
denote an irreducibl&-module. We define thendpoint- of W by

r:=min{i |0<i <D, EfW # 0}.

We observe thatQr <D — d, whered denotes the diameter & .
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In [23, Lemma 3.9] it was shown thatRETW # 0 (r<i<r +d), LEW # 0
(r <i<r+d), and also that

EXW £0 iff r<i<r+d (0<i<D). (18)
By Caughman 1[5, Lemma 5.1]we have

2r+d*>D,
whered* denotes the dual diameter Bf.

Lemma 5.1 (Terwilliger [23, Lemma 3.9]. LetY = (X, {R;}po<;<p) denote a scheme
which is P-polynomial with respect to the orderiRg, . . ., Rp of the associate classes. Fix
anyx € X,andwriteE} = Ef(x) (0<i<D), T =T (x). Let W denote a thirirreducible
T-module with endpoint r. Then

(i) W=ME*W.

(i) E;W = E;EXW (0<i<D).
(i) W is dual thin

6. The Q-polynomial property

LetY =(X, {Ri}o<; < p) denote ascheme. We say tliids Q-polynomialwith respect to
the given orderingto, E1, ..., Ep of the primitive idempotents) whenever for all integers
h,i, j (0<h, i, j< D), the Krein parameters satisfy

qihj =0if one ofh, i, j is greater than the sum of the other two

qihj =+ 0 if one ofh, i, j equals the sum of the other two

For the rest of this section, assuriieis Q-polynomial with respect to the ordering
Eo. ..., Ep. We abbreviate} := g}, ; (1<i<D), a} = ¢}, (0<i<D), b} := qj;,,
(0<i<D-1),and definej := 0, b}, := 0. We note that;=0 andc} =12, Proposition
11.3.7]. By Bannai and I1t42, p. 196]

bobi-- b4
i =

0<i<D).
G e O<i<D)

Fix anyx € X and writeE" = E7(x), A7 = Af(x) (0<i< D). Of particular interest are
the matrixA* := Aj(x) and the scalar8; := ¢1(i) (0<i< D). By (6),

A*EF=07E! (0<i<D). (19)
Itis shown in[2, p. 193]that

0F # 05 ifi#j (0<i,j<D), (20)
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and also that’ = v (A*) (0<i < D), wherev? is a polynomial with real coefficients and
degree exactly. In particular,A* generates the dual Bose—Mesner algeldita= M*(x).
By (6), it follows that

qi(j) = v?‘((’j) (0<i, j<D).
We now recall the dual raising, lowering, and flat matricesoDefine the matrices
R* = R*(x), F* = F*(x), L* = L*(x) by
D D D
R*:=>" EipA*E;, F*:=) EA'E, L*:=) E_1A"E,. (21)
i=0 i=0 i=0
Note thatrR*, F*, andL* have real entries by (6), and since t3¢;) are real. Also, observe
that F* is symmetric andk* = L*. Moreover,
A"=R"+ F*+ L". (22)
Using (21) and recalling’_1 = 0, Ep4+1 = 0, we find

R*E; = Ei1R* (-1<i<D), F'E;=E;F* (0<i<D),
L*E; = E;_1L* (0<i<D + 1). (23)

7. The T-modules of Q-polynomial schemes

In this section, we describe the irreducitilemodules of Q-polynomial schemes.

LetY = (X, {Ri}o<; < p) denote a scheme which is Q-polynomial with respect to the
orderingEo, ..., Ep of the primitive idempotents. Fix any e X and writeT = T (x). Let
W denote an irreducibl&-module. We define théual endpoint of W by

t:=min{i |0<i <D, E;W # 0}.

We observe thatQ < D — d*, whered* denotes the dual diameter Bf.
In [23, Lemma 3.12]it was shown thalR*E;W # 0 (t<i <t + d*), L*E;W #
0 (t <i<t+d*),andalso that

EiW #0 iff 1<i<r+d* (0<i<D). (24)
By Caughman If5, Lemma 7.1] we have
2t+d>D, (25)

whered denotes the diameter &f .

Lemma 7.1 (Terwilliger [23, Lemma 3.12] LetY = (X, {R;}o<; < p) denote a scheme
which is Q-polynomial with respect to the orderidg, ..., Ep of the primitive idempo-
tents. Fix anye € X, and writeE = E7(x) (0<i< D), M* = M*(x), T =T (x). LetW
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denote a dual thinirreducible T-module with dual endpoint t. Th@j-(iii) hold below

(i) W=M*E,W.
(i) EfW=EE,W (0<i<D).
(iiiy W is thin

8. The T-modules of P- and Q-polynomial schemes

LetY = (X, {Ri}o<; < p) denote a scheme which is P-polynomial with respect to the or-
deringRo, ..., Rp of the associate classes, and Q-polynomial with respect to the ordering
Eo, ..., Ep ofthe primitive idempotents. Fixanye X andwriteT =T (x). LetW denote a
thinirreducibler -module. Observ® is dual thin by Lemma 5.1, and the diameter and dual
diameter oW coincide by Lemma 3.1. We now present two base$ifpone of which diag-
onalizesA and the other diagonalizes*. We then consider the action &fon these bases.

Theorem 8.1. LetY = (X, {R;}o<; < p) denote a scheme which is P-polynomial with re-
spect to the orderingy, ..., Rp of the associate classesd Q-polynomial with respect to
the orderingEy, . . ., Ep of the primitive idempotents. Fixarye X,and writeE=E[ (x)
(0<i< D), T =T(x).LetW denote a thin irreducible T-module with endpoirtual end-
point t and diameter d

(i) Forallnonzerow € E,W,the vectorE v is abasis folE* W for r <i <r+d.Moreovey

Efv, Ef v, ..., E}  vis abasis forW
(if) Forallnonzerov € EW,the vectolE; v is a basis forE; W for t <i <t +d. Moreover
Ev, Eqv1v, ..., E;1qvis a basis for W

Proof. (i) RecallW isdual thinby Lemma5.1 sospansE, W. Fixanyi (r <i<r+d),and
observeE*W # 0by (18). AlsoE v spansE W, since by Lemma 7.1 and the construction,

EfW = EfE;W
=spanE;v).

We have now shown that v is a basis fol£* W. Applying (10), (18), we findg;v, ...,
EY, ,vis abasis fo.
(i) Similar to the proof of (i). [

Definition 8.2. Let Y = (X, {R;}o<; < p) denote a scheme which is P-polynomial with
respect to the orderingo, . .., Rp of the associate classes, and Q-polynomial with respect
to the orderingEy, ..., Ep of the primitive idempotents. Fix any € X, and writeE =
Ef(x) (0<i<D), T =T(x). LetW denote a thin irreducibl&-module with endpoint,

dual endpoint, and diameted. For alli (0<i <d), letc;(W), a;(W), b;(W) denote the
complex scalars such that

RE! ,_qv=c;(W)E} v, (26)
FE! jv=a;(W)E, v, (27)
LE*,,..v=bi(W)E", v, (28)
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wherev is any nonzero vector i, W. SinceE, W has dimension 1, we seg W), a; (W),
b; (W) are independent of the choice of We refer to thec; (W), a; (W), b;(W) as the
intersection numbersf W. We observeqo(W) =0, by (W) = 0. By theintersection matrix
of W, we mean the tridiagonal matrix

ao(W)  bo(W) 0
ca(W) ai(W) biu(W)
B(W) := c2(W)
- ba-1(W)
0 ca(W) aq(W)

Definition 8.3. Let Y = (X, {Ri}o<; < p) denote a scheme which is P-polynomial with
respect to the orderingp, . . ., Rp of the associate classes, and Q-polynomial with respect
to the orderingEy, ..., Ep of the primitive idempotents. Fix any € X, and writeE =

Ef(x) (0<i<D), T =T(x). Let W denote a thin irreducibl&-module with endpoint,
dual endpoint, and diameted. For alli (0<i <d), letc] (W), a*(W), b} (W) denote the
complex scalars such that

R*E;y i qv= C?(W)Etﬂ'U, (29)
F*Eiriv=a’(W)E; v, (30)
L*E;yiy1v = b;k(W)E,_Hv, (31)

wherev is any nonzero vector i) W. SinceE; W has dimension 1, we se&(W), a’ (W),
b} (W) are independent of the choicewfWe refer to the* (W), af (W), b; (W) as thedual
intersection numbersf W. We observe:§(W) =0, b;(W) = 0. By thedual intersection
matrix of W, we mean the tridiagonal matrix

ag(W)  b5(W) 0
;W) aij(W) bi(W)
*
BX(W) := (W)
- bg_1(W)
0 (W) aj(W)

Lemma 8.4. LetY =(X, {R;}o<; < p) denote a scheme which is P-polynomial with respect
to the orderingRy, ..., Rp of the associate classeand Q-polynomial with respect to
the orderingEy, ..., Ep of the primitive idempotents. Fix any € X, and write £ =

Ef(x) (0<i<D), T =T(x). Let W denote a thin irreducible T-module with endpoint r
dual endpoint tand diameter d

(i) B(W) is the matrix representing multiplication by A with respect to the basis,

Ef qv,..., E}, v, wherev is any nonzero vector ifi, W.
(i) Diag(0y, 0y, 4. ..., 07, ,) is the matrix representing multiplication by* with respect
to the basisE; v, E;*Jrlv, e E;"+dv, wherev is any nonzero vector i, W.

(iii) B*(W) is the matrix representing multiplication by* with respect to the basis; v,
Ei11v, ..., E;rqv, wherev is any nonzero vector i W.
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(iv) Diag(0;, 0,41, ..., 0,14) is the matrix representing multiplication by A withrespect to
the basisE; v, E;41v, ..., E;+qv, Wherev is any nonzero vector ii; W.

Proof. (i) Immediate from (16) and Definition 8.2.
(i) Immediate from (19).
(i) Similar to the proof of (i).
(iv) Similar to the proof of (ii). [

Corollary 8.5. LetY = (X, {R;}o<;<p) denote a scheme which is P-polynomial with
respect to the orderingo, . .., Rp of the associate classemd Q-polynomial with respect
tothe orderingEo, . .., Ep ofthe primitive idempotents. Fixamye X,andwrite7 =T (x).
Let W denote a thin irreducible T-module with endpoijrmual endpoint tand diametet!.

(i) The eigenvalues & (W) are0;, 0,11, ..., 0r1+q4.

*

(i) The eigenvalues a#*(W) are 0y, 07,4, ..., 07, ,.

Corollary 8.6. LetY = (X, {R;}po<;<p) denote a scheme which is P-polynomial with
respect to the orderin@o, . .., Rp of the associate classend Q-polynomial with respect
to the orderingEy, ..., Ep of the primitive idempotents. Fix anye X, and write E =
Ef(x) (0<i<D), T =T(x). Let W denote a thin irreducible T-module with endpeint
dual endpoint, and diameter/. Then(i) and(ii) hold below

() S pai(W)=Y"1"0,.
(i) Y4 garw) =30,

Proof. (i) By Corollary 8.5(i), both sides of the equation in (i) equal the trac8@¥).
(ii) By Corollary 8.5(ii), both sides of the equation in (ii) equal the trac&dfw). [

9. Almost-bipartite P- and Q-polynomial schemes

Let Y = (X, {Ri}o<;<p) denote a scheme which is P-polynomial with respect to the
orderingRy, ..., Rp of the associate classes. We $ais almost-bipartite(with respect to
the P-polynomial ordering) whenever= 0 for 0<i <D — 1 andap # 0.

For the remainder of this article, we shall be concerned with P- and Q-polynomial schemes
for which the P-polynomial structure is almost-bipartite. We thus make the following defi-
nition.

Definition 9.1. Let Y = (X, {Ri}o<; < p) denote a scheme with >3 which is almost-
bipartite P-polynomial with respect to the orderiRg, ..., Rp of the associate classes,
and Q-polynomial with respect to the orderifg, ..., Ep of the primitive idempotents.
Fix anyx € X, and writeT = T (x) to denote the Terwilliger algebra &f with respect to
x. (Where the context allows, we will also suppress the referenegefto the individual
matrices inT', e.g.,Ej = E5(x), R = R(x), etc.).
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Lemma 9.2. LetY be as in Definitiof.1. Then(i)—(iii) hold below
() EfYAE; =0 (0<i<D —1),andE}AE}, #0.
(i) F=E}AE7,, where F is the matrix fronil5).
(i) FEr=0(0<i<D-1.

Proof. (i) Immediate from (8) and the factthat=0 (0<i<D — 1),ap # 0.
(i), (iii) Immediate using (i). O

Theorem 9.3(Collins[7, Theorem 14.3]. With reference to Definitio®.1,let W denote
an irreducible T-module with endpoint r and diameter d. Thend = D.

10. Each irreducible T-module is thin and dual thin

LetY be as in Definition 9.1, and |é¥ denote an irreducibl&-module. In this section,
we show thatV is both thin and dual thin.

Lemma 10.1. With reference to Definitio.1,let W denote an irreducible T-module with
dual endpoint tand fix any nonzero € E;W. Then

() REY jv+LE} jv=0,Ev (0<i<D - 1),
(i) RE% _jv+ FEHv=0,E%v.

Proof. Observe thativ = 0,v. Fix an integel (0<i < D). Now by (16), (17), we have

RE; v+ FEjv+ LE} jv=EAv
= OIE;kU.

Assertion (i) follows since” E7 =0 for 0<i < D — 1. Assertion (ii) similarly follows since
Ep,1=0. 0O

Lemma 10.2. With reference to DefinitioB.1,let W denote an irreducible T-module with
dual endpoint tand fix any nonzero € E;W. Suppose is an eigenvector foF* with
eigenvaluex. Then

(i) 07 1RE} v+ 07 LEY jv=(0;410] — 0011+ 00,)Efv (0<i<D — 1),
(i) Op_1RE%_qv+ O0pFELv = (014107, — 06,41 + a0, Efv,

wherefp 1, 0 ; are indeterminates

Proof. ObserveL*v = 0 by (23), andF*v = av by assumption, s&*v = (A* — al)v in
view of (22). SinceR*v € E,; 1 W by (23),

A(A* —al)v =0, 1(A* — al)v. (32)
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Fix an integeti (0<i < D). We may now argue that
07 1RE{ qv+ 07 FEjv + 07 1 LE} 1v

= (RE_,+ FEfv+ LE},)A*v  (by (19))

=EfAA*v (by (16),(17))

= EFA(A* — al)v + o E} Av

=0,11E (A" —oal)v + 0,0E7v  (by (32))
= (041007 — o) + a0, Efv  (by (19)),

wherelp,1, 07 1, 07, ., are indeterminates. Assertion (i) follows sinE& =0 for 0<i <
D — 1. Assertion (i) similarly follows sinc&}, ; =0. [

Lemma 10.3. With reference to Definitiofl.1,let W denote an irreducible T-module. Then
W is thin and dual thin

Proof. Letr denote the dual endpoint&f. SinceF*E, W C E,;W,the spacé, W contains
a nonzero eigenvecterfor F*. By Lemma 10.1,

RE} v+ LE}, v € sparEfv) (0<i<D —1), (33)
REY},_qv + FE}v € spanEpv). (34)
By Lemma 10.2,
0;_{RE} v+ 0; 1LE} v espanEfv) (0<i<D -1, (35)
H_1RE%,_qv+ 05 FE}v € spaiE}v), (36)
wheref* , is indeterminate. By (33), (35), and (20), we find
RE}v € spanE}, v) (0<i<D —2), LE}vespaniE; jv) (1<i<D).

By (34), (36), and (20), we finRE},_,v € spanEjv) and FE},v € span(E}v). Com-
bining the above information with Lemma 9.2(iii) and recalling tRdi}, = 0, LEj =0,
we see

RE}v € spanEf, v) (0<i<D), 37)
FE}v e spanEfv) (0<i<D), (38)
LE}v e spanE}_v) (0<i<D). (39)

We claim that
W =spafEjv, Ejv, ..., E)v). (40)

To see this, le’ denote the right side of (40). Certainly’ C W; to prove thatW’ = w,
we show thatV’ is a nonzerd’-module. Observe that=Y"" Efve W, soW #0.
Observe that/*W’ € W’ by the construction. Observe thatv’ € W/, FW’ € W', and
LW’ C W’ by (37)—(39). Recall that = R + F + L generate/, soMW’' C W’. Since
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M, M* generatel', we now have thaT W' € W’, so W’ is aT-module. It follows that
W’ = W by the irreducibility of W. We now have (40), which implies th& is thin. By
Lemma 5.1 W is dual thin. O

We conclude this section with a comment.
Theorem 10.4. With reference to Definitiofl.1,let W denote an irreducible T-module with

diameterd > 1, endpointr, and dual endpoint t. Then

0100 — 0,110

wW) =45

(41)
Proof. Fix any nonzeraw € E;W. Settingi = r in the equation in Lemma 10.1(i), we find
that

LE} jv=0,Ev. (42)

By Lemma 10.3 and (30), is an eigenvector foF*, with eigenvaluej(W). Settingi =r,
o = ag(W) in the equation in Lemma 10.2(i), we find

07 1 LEY v = (04107 — ag(W) (041 — 0))EJv. (43)
Eliminating LEY_ ;v in (43) using (42), and sincEv # 0, we obtain

07 10r — 014107 = ag(W)(0; — 0,41),
and (41) follows. O

11. Computation of ¢; (W), a; (W), b; (W)

Let Y be as in Definition 9.1, and l8¥ denote an irreducibl&-module with diameter
d. In this section, we compute the parametg(dV), a; (W), b; (W) (0<i <d). We begin
with a; (W).

Lemma 11.1. With reference to DefinitioA.1,let W denote an irreducible T-module with
diameter d. Then

(i) a;(W)=0(0<i<d -1,

(i) aqa(W) # 0.

Proof. (i) Immediate from (27) and Lemma 9.2(iii).
(i) Immediate from Theorem 9.3 arj@d, Theorem 15.2] [

Lemma 11.2. With reference to DefinitioA.1,let W denote an irreducible T-module with
dual endpoint t and diametet. Then

() ci(W) +bi(W)=0; (0<i<d -1,
(i) ca(W) +aqa(W)=0,.
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Proof. Fixany nonzere € E, W, and fixaninteger (0<i <d). Using (26)—(28), Lemma
10.1, and Lemma 9.2(iii), we find

(ci(W)+a; (W) +b; (W))Er.:,.,v = (REH_, 1+ FEr—H + LE;k+,'+1)U
—9; r+z

SinceE}, ;v # 0 by Theorem 8.1(i), we have
ci(W) +a;(W) +b;(W) =0, (0<i<d).

We observer; (W) =0 (0<i<d — 1) by Lemma 11.1 and; (W) = 0 by Definition 8.2.
The result follows. [

Lemma 11.3. With reference to DefinitioA.1,let W denote an irreducible T-module with
endpoint t dual endpoint tand diameter d. Suppoge> 1. Then

() 07 iaci(W) + 07 abi (W) = 0,074 + 011107 — 04207 (0<i<d — 1),
(ll) 9r+d 1Cd(W) + 9,+dad(W) 0[ r+1 + 9f+10r+d — 9t+10r’

wheref” ; is indeterminate

Proof. Fix any nonzerov € E;W, and fix any integef (0<i<d). By (30), v is an
eigenvector forF* with eigenvaluezg(W). Using (26)—(28), Lemmas 9.2(jii), 10.2, and
(41), we find

(0r+l 16 (W) + 0r+lal (W) + 6*+,+1b (W))EH_,
- (0r+1—1REr+1—1 + 0r+z FEj+t + 0r+l+lLEr+1+l)v
= (01+10f+i —ay(W)0, 41+ do(W)Ot)E;k.;.iU
= (01071 + 010207 — 0,426 EX v,
where0* 4, 07, 1 are indeterminates. Recdll " ;v # 0 by Theorem 8.1(j). We observe

ai(W)=0 (0<z <d —1) by Lemma 11.1(i) andé; (W) = 0 by Definition 8.2. The result
follows. [

Theorem 11.4. With reference to Definitiof.1,let W denote an irreducible T-module with
endpointt dual endpointtand diameter d. First assunade=0.Thenco(W)=0,ao(W)=0;,
andbg(W) = 0. Now assumé >1. Then

co(W) =0, (44)
0,(0* —0,41(0% . — 07
C,’(W) l‘( r+i+1 r+l) *H-l( r+i r) (1<l gd _ 1), (45)
it — 07
(W) = 0:(071q — 0741) — 01+1(0r+d 0;) (46)
rid — Oipaa
a(W)=0 0<i<d-1, 47)
0, (0% -0 0;11(0%
ag(W) = tOrvaa . r+1) ~ ’“( r4d ), (48)

rid—1— 0ra
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bo(W) = 0y, (49)
0:0% . =0 1) —0,4000%, . — 0F
bi (W) = ¢ ( r+i—1 * r+l) *t+l( r+i r) (1<i<d - 1), (50)
i1~ Oryiga
by (W) = 0. (51)

In particular, ¢; (W), a; (W), b; (W) are real for0<i <d.

Proof. Firstassumé =0. We findag(W) = 6, by settingd =0 in the equation in Corollary
8.6(i). By Definition 8.2, we find:o(W) = 0, bg(W) = 0.

Now assumd > 1. Egs. (44), (51) are immediate from Definition 8.2, and Eq. (47) follows
from Lemma 11.1. Eq. (49) follows from Lemmas 11.2(i) and (44). To obtain (45) and (50),
solve the linear system determined by the equations in Lemmas 11.2(i) and 11.3(i) for the
variables:; (W), b; (W). We observe that the coefficient matrix of this system is nonsingular
sinced, . .., 07, are distinct. To obtain (46) and (48), solve the linear system determined by
the equations in Lemmas 11.2(ii) and 11.3(ii) for the variablg$V), a;(W). We observe
that the coefficient matrix of this system is nonsingular siffge . ., 07, are distinct. O

12. Computation of ¢} (W), a’ (W), b7 (W)

Let Y be as in Definition 9.1, and l8¥ denote an irreducibl&-module with diameter
d. In this section, we compute the parametgidV), a’ (W), b7 (W) (0<i <d).

Lemma 12.1. With reference to DefinitioA.1,let W denote an irreducible T-module with
endpoint r and diameter d. Fix any intege(0<i <d). Then

CE(W) + af (W) + bi (W) = 07 (52)

Proof. Lett denote the dual endpoint & . Pick any nonzere € E;W, and observe that
A*v = 0%v. We may now argue that

(c; (W) +af (W) + b (W) E; v
=(R*Eti—1+ F*Eii + L"E;yiy1)v  (by Def. 8.3
=E A% (by (22), (23)
= HfElJriv.

The result now follows, sinc&, ;v # 0 by Theorem 8.1(ii). O

Lemma 12.2. With reference to DefinitioB.1,let W denote an irreducible T-module with
endpoint r dual endpointtand diameter d. Suppoge> 1, and fix any integer (0<i <d).
Then

Oryi—1¢; (W) + O;1iaf (W) + 0144107 (W) = 07 104, (53)

wheref_1, 0p41 are indeterminates
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Proof. Pick any nonzera € E}W. Observer < D sinced >1, so Fv = 0 by Lemma
9.2(jii). HenceAv = Rv € E* , W. It follows that

A*Av = 0%, Av. (54)
We may now argue that

Orgi—1c; (W) + Oryiaf (W) + 0r4ip1b] (W) Eryjv
= (044i-1R*Eii—1+ 0;4i F*Eryi + 014i+1L*E;1iv1)v  (by Def. 8.3
=(R*E;yi—1+ F'Eiyi + L"E;yi41)Av  (by (13)
=E+iA%Av  (by (22), (23)
= 9f+1E,+,'Av (by (54)
=010+ Eryiv - (DY (13).

The result now follows, sinc&, ;v # 0 by Theorem 8.1(ii). [J

Lemma 12.3. With reference to DefinitioA.1,let W denote an irreducible T-module with
endpoint r dual endpointtand diameter d. Suppoge> 2, and fix any integer (0<i <d).
Then

07,; 1} (W) + 07, a7 (W) + 07, 157 (W)

= 07,507, + bo(W)cr (W) (0F — 07,5, (55)
wherel_1, 0p41 are indeterminates
Proof. For notational convenience, set= bo(W)c1(W). Pick any nonzere € E}W.
We first claim that. Rv = ow. To see this, observe by Theorem 8.1(i), there exists a nonzero

z € E; W such thab = E}z. Applying Definition 8.2,

LRv=LRE*z
=c1(W)LE} 1z
=bo(W)c1(W)E}z,
and the claim follows.
Observe +1 < D sinced > 2, soFv=0, F Rv=0 by Lemma 9.2(iii). By these remarks,
the above claim, Eq. (16), and sinte =0,

R?>v=(R+ F + L)>v— LRv
= (A% — al)v. (56)

By (56), and sinc&k?v € E*,,V by (17),

A*(A? — alyv =07, ,(A? — al)v. (57)
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We may now argue that
OFiacF (W) + 07} (W) + 07y 1157 (W) Ergiv
= (02, _{R*Eryi1+ 02 F*Ery; + 02, L"Erii)v  (by Def. 8.3
= (R*Eyi—1+ F*Ersi + L*Eiz1) A% (by (13)
= E;A*A%v  (by (22),(23)
= E; i A*(A? — al)v + 0E; i A*v
=05, (A% — al)Eryiv + 00F E;piv - (by (57)
= (07 (0%; — o) + o0 E;+iv (by (13).
The result now follows, sinc&, ;v # 0 by Theorem 8.1(ii). O
Theorem 12.4. With reference to Definitiof..1,let W denote an irreducible T-module with

endpoint rdual endpointtand diameter d. First assurde=0. Thency(W)=0,ad(W)=0;,
b5(W) =0.Now assumd > 1. Then

(W) =0, (58)
(07, — 02)(0F 2 — 0740 + (000,11 — 014045 11) (0F 11 — 6))

*
(W) =
(W) Or4i—1 = 0i4) (Os4i—1 — Orit1)
1<i<d - 1), (59)

Or1a (071 — 07)

W)= ’ 60

W Or4d—1— Oi4a (60)
0,(0F — 07,1

PE(W) = —or — Tr+l) 61

oW = 0 (61)
b*(W) _ (0t2+i - 0[2)(0;k+2 - 0f+l) + (6t6t+l — 01+i01+i71)(0j+l _ 0:)

l Ortit1 — Or4) Orita — Or4i—-1)
(1<i<d - 1), 62)
by(W) =0, (63)
af(W) =0 —b}(W) — (W) (0<i<d). (64)

In particular, ¢; (W), af (W), b7 (W) are real for0<i <d.

Proof. Firstassumé =0. We findag(W)=0; by settingd =0 in the equation in Corollary
8.6(ii). By Definition 8.3, we find:q(W) = 0, by (W) = 0.

Now assumei > 1. Egs. (58), (63) follow from Definition 8.3. Eq. (64) follows from
(52). We obtain (60) by setting=d in (52), (53), and solving fot};(W), using (63). We
now have (60), and Eq. (61) is obtained similarly.

It remains to prove (59) and (62). Assurig=2 and fix anyi (1<i<d — 1). Observe
(52), (53), and (55) form a system of three linear equations in the three varigol&s,
a’(W), andb;(W). Observe the coefficient matrix is Vandermonde, hence nonsingular,
sincely, ..., 0p are distinct. Solving this system, we obtain (59) and (62).
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13. Some comments on the intersection numbers

Let Y be as in Definition 9.1, and Ié¥ denote an irreducibl@-module with diameter
d. Inthis section, we show the expressidpns; (W)c; (W) andb;_,(W)c} (W) are positive
for 1<i <d.

Lemma 13.1. With reference to Definitio.1,let W denote an irreducible T-module with
endpoint r dual endpoint tand diameter d

(i) Forany nonzerw € E; W,

i (WIE; vl =bi 1 (W) Efy_qvl” (1<i<d).

(i) For any nonzera € EXW,

S WIEriv)1? = bf_{(W) | Eryic1vl? (1<i <d).

Proof. (i) By (26), (28), and sinc&® = L',

i WIE!vl? = (REF;_qv, E}v)
= (E7yiqv. LE7v)
=bi_1(W)|EF;_qvl%.

Recall thath; _1(W) is real by Theorem 11.4, so the result follows.
(i) Similar to the proof of (i). [

Corollary 13.2. With reference to Definitio8.1,let W denote an irreducible T-module with
diameter d. Then

(i) bi—a(W)e;(W) >0 (1<i<d),
(i) b;kil(W)C;((W) >0 (1<i<d).

Proof. (i) Let r denote the endpoint d¥. The produch; _1(W)c; (W) is nonnegative by
Lemma 13.1(i), and sincgE?, ;v[|> and||E}",;_,v|| are positive. Observi_1(W) # 0
by (28) and the previously mentioned fact tHak;W # O (r <i<r + d). Similarly,
¢; (W) # 0 by (26) and the fact thaREXW # 0 (r <i <r + d).

(ii) Similar to the proof of (i). O

14. The isomorphism classes of irreducibld’-modules

With reference to Definition 9.1, in this section we prove that the isomorphism class of
any given irreducibl@’-module is determined by its dual endpoint and diameter.

Theorem 14.1. With reference to Definitiod.1,let W, W’ denote irreducible T-modules
with endpoints fr’, dual endpoints, ¢, and diameterd, d’, respectively. Then the following
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are equivalent

(i) W andW’ are isomorphic as T-modules
(i) r=1"andd =d'.
(i) =+ andr =r".
(iv) B(W)=B(W).
(v) t =t and B*(W) = B*(W').

Proof. (i) — (ii) Let ¢ denote ar-isomorphism fromW to W’. Then for any integer
i (0<i<D),

EW=0 & ¢EW)=0 & EdW)=0 & EW =0.

Now (ii) follows by (24) and since = d*.

(ii) <> (iii) Immediate by Theorem 9.3.

(ii), (i) — (v) By Theorem 11.4, the entries in the intersection matrix are determined
by the endpoint, dual endpoint, and diameter.

(i), (iii) — (v) By Theorem 12.4, the entries in the dual intersection matrix are determined
by the endpoint, dual endpoint, and diameter.

(iv) — (i) B(W)is ad + 1 byd + 1 matrix, andB(W') isd’ + 1 byd' + 1, sod =d’. By
Lemmas 11.1 and 11.2, the sum of the entries in each ra(vf) equals),, and the sum
of the entries in each row @ (W’) equalsl,,. Hencel), = 0,/, sot = ¢’ in view of (14).

(v) — (i) B¥*(W)is ad + 1 byd + 1 matrix, andB*(W’) isd’ + 1 byd’' + 1,sod =d’'.
Now r = ' by Theorem 9.3. Pick a nonzeio € EfW and recall by Theorem 8.1(ii)

that E,v, ..., E;+qv is a basis folw. Similarly, pick a nonzere’ € EfW’, and observe
Ev, ..., E,+qv isabasis foW’. By linear algebra, there exists an isomorphism of vector
spacesp : W — W’ such that
¢:Ev— Ev (t<i<t+d). (65)
We showg is an isomorphism of -modules. Sincel*, Ey, ..., Ep generatdl’, and since
A* = R* + F* + L*, it suffices to show
(R*¢p — pR*)W =0, (66)
(F*¢p — pF* YW =0, (67)
(L*¢p — pL*)W =0, (68)
(Ejp —pE)HW =0 (0<j<D). (69)

Eq. (69) is immediate from the construction. To see (66), observectiiét) = ¢ (W)
(0<i <d). Now by (29),R*¢ — ¢ R* vanishes orE; ;v (0<i <d). Eq. (66) follows. Egs.
(67), (68) are proven similarly.

We conclude this section with a few comments.

Lemma 14.2(Terwilliger [25, Theorem 4.1 With reference to Definitio8.1,there exists
a unique irreducible T-modul®, with diameter D. The endpoint and dual endpoiniaf
are both zero. We refer t¥; as the trivial T-module
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Lemma 14.3(Terwilliger [25, Theorem 4.1] With reference to Definitio®.1, let Wy
denote the trivial module for Y. Then

(i) ¢i(Wo) =ci, ai(Wo) =a;, bj(Wo)=b; (0<i<D),
(i) cf(Wo) =c?, af(Wo) =af, bf(Wo) =bF (0<i< D),

15. The parameters in terms ofg and s

With reference to Definition 9.1, we now explicitly compute the intersection matrices
and dual intersection matrices of the irreduciBlenodules. For convenience, we exclude
a small class of examples.

Let D denote any integer at least 3. L@}, 1 denote the odd graph with diameferand
let (o py 1 denote the folded@2D + 1)-cube[4, pp. 259,264]It is well-known thatOp 1,
Osp+1 are almost-bipartite P- and Q-polynomial schemes with diandetén [20], it was
shown thatO p 1 is uniquely determined by its intersection numbers. By Brouwer @ al.

p. 264] Cap41 is uniquely determined by its intersection numbers. For more information
on the structure of the irreducib®-modules for these schemes, §2€).

Lemma 15.1. With reference to Definitiof.1,suppose Y is notone 6fp1, d2p11. Then
there exist scalarg, s, h, h* € C, with ¢, h, h* nonzerg such that
0; =00+ h(1—q")YA—sq g™ (0<i<D), (70)
0f =05+ h* (1 — gL — g ?P~ g™ (0<i<D). (71)

Proof. By Brouwer et al[4, pp. 237, 24Q]there exist scalarg, y, y* € R such that
Oi—1— B0 +0;iy1=y (A<i<D -1, (72)
1= BOF + 07 =77 (A<i<D-1). (73)

We showf; # 2, f # —2. First, suppos§$ = 2. By Brouwer et al[4, Theorem 1.11.1]
there exists a bipartite P-polynomial schehiavhose quotient scheme¥s Applying[19,
Theorems 10.4,15.20 Y’, we findY is (>p .1, a contradiction. Thereforg # 2.

Now supposeg = —2. Then by Terwilligeif22, Theorem 2]Y must beOp1 or Oapy1,
a contradiction. Thereforg # —2.

Sincef # 2 andf # —2, there existgy € C such thatg ¢ {1, 0, —1}, and such that
B =q + g~ 1. Solving the recurrence in (72), we obtain

0; =hg™ +hg¢' +h" (0<i<D) (74)

for someh, h', h" € C. By (14),h, i’ are not both zero. Replacingby ¢~ if necessary,
we may assumé # 0. Now there exists € C such thati’ = sgh. Eliminating#’ in (74)
using this, we find

0; —0o=h(1—q")YA—sq" g™ (0<i<D),
and (70) follows.



38 J.S. Caughman et al. / Discrete Mathematics 292 (2005) 17 -44

Solving (73), we obtain
0f =h*q™ +h*'q" + ™" (0<Ki<D) (75)

for somen*, h*’', h*"" € C. By Terwilliger [24, Theorem 2we haveh*’ = h*gqs*, where
s* =¢~?P=2_Eliminatingx*’ in (75) using this, we obtain (71). Obserk&is nonzero by
(20). O

Corollary 15.2. With reference to Definitiod.1, suppose Y is not one éfp1, Uop41.
Letqg, s be asin Lemma5.1.Then

¢ #1 (1<i<2D), (76)
sg' #1 (2<i<2D). (77)

Proof. Evaluate (14) and (20) in terms gf s using Lemma 15.1. [J

Lemma 15.3. With reference to DefinitioB.1,suppose Y is not one 6fp 1, (Jopy1. Let
q,s,h, h* be asin Lemma5.1.Then

0o =h(1+ sq), (78)
. h*@*P — 11+ 5q)
o= q2P(1 - sq?) (79)

Proof. We apply (55) withW = Wy, r =0,t =0,d = D, andi = D. Evaluating the result
using Theorem 11.4, Theorem 12.4, and Lemma 15.1, we obtain (78).
Recall thata§ = 0, so by (41) (withr =0,7 =0),

0700 = 0105.
Solving this equation fol using (70), (71), (78), we obtain (79) ]

Corollary 15.4. With reference to Definitiod.1, suppose Y is not one @ip+1, Lopy1.
Letq, s, h, h* be asin Lemma5.1.Then

0; =hq ' (1+sq”*Y) (0<i<D). (80)
Proof. Routine using (70), (78).

Theorem 15.5. With reference to Definitiof.1,suppose Y is not one 6fp41, Lopy1. Let
W denote an irreducible T-module with dual endpoint t and diameter d. First asgunfe
Thenco(W) = 0, ag(W) = hg™" (1 + sq%*1), bo(W) = 0, whereq, s, h are as in Lemma
15.1.Now assumé >1. Then

co(W) =0, (81)

h(l— qi)(l—}— sq2+2d+2t7i)

ci(W) = g+ (q2d-2+1 _ 1)

(1<i<d - 1), 82)
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h(l— qd)(l—l- sq2+d+2t)

ca(W) = i (83)
ai(W)=0 (0<i<d -1, (84)
B h(qd+l _ l)(1+ Sql+d+2t)
aqg(W) = G —1) : (85)
bo(W) =hq ™" (sq” ' + 1), (86)
h 2d+1—-i _ 1)(1+ 2t+i+1 .
bi(W) = “ gt (q2dzgi+l iq]_) ) (A<isd -1, (87)
by (W) =0, (88)

wheregq, s, h are from Lemmad5.1.
Proof. Routine using Theorems 11.4, 9.3, (71), (79), and (80).

Theorem 15.6. With reference to Definitiof.1,suppose Y is not one 6fp41, Lopy1. Let
W denote an irreducible T-module with endpointiwal endpoint tand diameter d. Then

cp(W) =0, (89)

h*(l _ th)(l _ s2q2+2d+4t+2i)

Cz*(W) = qD+d+l(1 _ sq2i+2’)(1 _ Sql+2i+21) (A<i<d -1, (90)
h*(l _ q2d)(1+ Sq2t+2d+1)
ca(W) = gDFd+I(1 — sq2+2d) 1)
. h*(qu o 1)(1+ Sq2t+1)
bO(W) = qD+d(1—Sq2+2t) ’ (92)
h*(qu—Zi — - s2q2+2i+4t) .
b;k(W) = qD+d—2i(1 _ sq2+2i+21)(1 _ sql+2i+21) (A<i<d -1, (93)
by (W) =0, (94)
ai (W) =07 — by (W) — ¢ (W) (0<i<d), (95)

whereg, s, h* are from Lemmad.5.1.
Proof. Routine using Theorems 12.4, 9.3, (71), (79), and (80).

Corollary 15.7. With reference to Definitiod.1, suppose Y is not one éfp1, Uop1.
Letqg, s be asin Lemma5.1.Then

sgt # -1 (1<i<2D +1).
Proof. Recall the trivial moduléVp has dual endpoint=0 and diameted = D. By Lemma

14.3, the intersection numbers and dual intersection numbévs of (82), (85)—(87), (90)
are nonzero. Using this information, we obtain the desired restilt.
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Corollary 15.8. With reference to Definitio.1, suppose Y is not one 6fp.1, Oopt1.
Then
. g —q?
(g — DA+ sq2P+1y’

(96)

2D+1 2 3
«_ 97T —s5q%) A~ 59°)
= (1— g2 (1 — s2q2D+4) (97)

wheregq, s, h, h* are from Lemmal5.1.We remark the denominators {86), (97)are
nonzero by Corollaried5.2and15.7.

Proof. Concerning (96), recall the trivial modul&y has endpoint = 0, dual endpoint
t =0, and diameted = D. Also c¢1(Wp) = 1 by Lemma 14.3 and sineg = 1. Evaluating
(82) using this data we find

_ h(g — DL+ sq?PHh
q—q?P

1

s

and Eq. (96) follows. Eq. (97) is proven similarly(J

16. Multiplicities of the irreducible T-modules

With reference to Definition 9.1, in this section we compute the multiplicities with which
the irreducibler’ -modules appear in the standard module

Definition 16.1. With reference to Definition 9.1, fix a decomposition of the standard mod-
ule V into an orthogonal direct sum of irreducitifemodules. For any integersd (0<1,

d < D), we define muliz, d) to be the number of irreducible modules in this decomposition
which have dual endpointand diameted. It is well-known that muléz, d) is independent

of the decomposition (cf10]).

Definition 16.2. With reference to Definition 9.1, define a séty
T :={(t,d) € Z% | 0<d<D, 3(D — d)<t<D — d}.

By (25), multz, d) = O for all integers, d such that(z, d) ¢ T. We define a partial order
<on7 by

(t,d)<(',d) ifandonlyif r<t'andt +d'<t+d.

Example 16.3. With reference to Definition 9.1, suppoge= 7. In Fig. 1, we represent
each elementt, d) € 7 by a line segment beginning in th#h column and having length
d. For any elementas € 7', b € T, observe that<b if and only if the line segment
representing extends the line segment representing
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0 1 2 7

3 4 5 6

Fig. 1. The set” whenD =7.

Lemma 16.4. With reference to Definitiof.1and Definitionl6.2 fix any(z, d) € 7. Then

t+d—1
tracqE,L**R* E,) = m, ]_[ bict an- (98)
h=t

Proof. By Dickie and Terwilliger{12, Lemma 4.1]we find
trvaEtAZEt+dA:;Et) = mtqé,H_d. (99)
By Bannai and Itd2, p. 276]and sincd" is Q-polynomial, we find

t+d—1 b*
dara= ] —— (100)
h=t t+d—h
We claim
EiyqASE, = R*E,. 101
t+d A gLt CTCE"'CZ t ( )

To see this, recall that forQi < D, A} is a polynomial inA* with degreei and leading
coefficient(cics - - - cj‘)_l. Combining this and (9) we find; ; yA* E; =0 for 0<i <d —1.
We may now argue
cicy - ChEqAYE, = E;y A E,
=Ei1qA"Ei1g1A" - E(1ATE,
=R*E,.
We now have (101). Taking the transpose of (101) we get

1
o E.L*. (102)

Evaluating (99) using (100)—(102), we get the desired result.

E(ASEi+q =
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Lemma 16.5. With reference to Definitio®.1 and Definition16.2,fix (i, j) € 7 and
(t,d) € T. Then for any irreducible T-module W with dual endpoint i and diameter |

t—i+d—1
traca E,L*'R*E)lw =[] b5(W)cj 2 (W) (103)

h=t—i
if (i, j))<(t, d), andtracgE,L* R* E,)|w = Oif (i, j)#(t, d).

Proof. Letr denote the endpoint 6¥ and pick any nonzero € E*W. By Theorem 8.1(ii),
B :={Env|i<h<i+ j}is abasis fol. We consider the action df,L* R**E, on B.
First assumei, j)<(z, d). ThenE, L*¢ R*? E, vanishes on every element BfexceptE, v,
and

t—i+d—1

EL*RE(Ev)= [] bi(W)cj 1 (W)Ew

h=t—i

by (29), (31). Eq. (103) follows. Next assurtie j)4(z, d). ThenE; L*? R*? E, vanishes on
each element oB, and so its trace oW is zero. [

To state our next theorem, we need a bit of notation XLbe as in Definition 9.1 and let
T be as in Definition 16.2. Selet, d) € 7. We definecj(t, d) := 0, b)(t,d) := 0. For
d >1 we further define

(02, — O2)(OF 5 — 05 0) + 00,41 — Orsi0rsi 1) (04 — 09

*t,d) =
¢t d) Orri—1 = 0i1)(Or4i—1 — Or4i41)

(I<i<d -1,

Or+a (0:+1 - Of)

“(t,d) = ,
) Or+a-1— Ora
0,(0F — 07, 1)
bi(t, d) = F—H‘,
0( ) 9t - 9t+l
b dy e Ui = OO = 0710) + 0101 = 04010 011 = 0)

Ortit1 — 0i4) Orgig1 — Or4i—1)
A<i<d - 1),

wherer := D —d. Observe that itV is any irreduciblel’-module with dual endpointand
diameterd, then(z, d) € T andcf (¢, d) = c; (W), b (t, d) = b} (W) (0<i <d). However,
such a module need not exist.

We now give a recurrence which will enable us to compute the multiplicities of the
irreducible7-modules.
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Theorem 16.6. With reference to DefinitioB.1,fix any(z, d) € T. Then

t+d—1 t—i+d—1
me [] brcian= D, multc.j) [] 656 il ). (104)
h=t i,j)er h=t—i
@i, /)=(t,d)

Proof. SinceT is semisimple, we may decompose the standard mdduls

V=W1+Wo+-..+ W, (orthogonal direct sum

whereWy, Wo, ..., W, are irreduciblel’-modules. It follows that
S
trac E,L* R* E,) = Z traceE, L™ R* E,)|y,. (105)
i=1

Evaluating (105) using (98), (103) we obtain (104).]

Remark 16.7. With reference to Definition 9.1, we can use Theorem 16.6 to recursively
compute the multiplicitiegmult(z, d) | (r,d) € 7'}. Indeed, pick anyz,d) € 7. Then
(104) gives a linear equation in the variablesult(i, j) | (i, j) € T, (i, j)<(t, d)}. In this
equation, the coefficient of mult d) is

d-1

[] bitt. et ). (106)

h=0
Suppose the coefficient (106) is nonzero. Then we can divide both sides of Eq. (104) by it,
and obtain multr, 4) in terms of{mult(i, j) | (i, j) < (¢, d)}. Suppose the coefficient (106)

equals 0. By Corollary 13.2(ii), there is no module with dual endpoantd diametet, so
mult(z, d) = 0.

We now illustrate Theorem 16.6 with an example.

Example 16.8. With reference to Definition 9.1, suppo¥eis not one ofOp+1, Uop1.
For all (¢, d) € T such thatl > D — 3, the scalar mult, d) is given below.

(i) mult(0, D) = 1.

i 1 — (@®P—D(A+s¢?)

(i) mult(1, b - 1) = 10 Lt

_ oy _ @®P—g®(A+s5q)(1+54?) (sq?PH2-1)
(”I) mU|t (l’ D 2) - (qz—l)(S2q2D+4—1)(1+5q2D+1)

; _ oy _ _(@®P-1)(@*°—¢®) (A+sq) (1+sq%) (s2¢?P3-1)
(V) mult@ D —2) = 4(g+1)(g—D)?(s2g2P+4—1)(L+sq%P) (1+5q2P+1)

oy (@21 (@ =M (A tsq) (LsgD Arsgh) (1-5¢2PH2)
(V) Mult2, D =3) = o0 52 D asg2 D) 5P D +54200A5g P
; o @ -1 (q* —4%(q? —g% A+59) A+59?) (1+565) (1-52¢2P+3)
(vi) mult(3, D — 3) =

12q=)(q?=D)(@>=D(I+5¢"73) (5P =1)(q+5¢20) (T+s¢?P) (T+5¢70 )

The scalarg, s are from Lemma 15.1. We remark the denominators in (i)—(vi) are nonzero
by Corollaries 15.2 and 15.7.
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Proof. Solve (104) recursively for the multiplicities, as outlined in Remark 16.7. Evaluate
the results using Lemmas 15.1, 15.3 and Corollaries 15.4, 1518.
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