
Discrete Mathematics 292 (2005) 17–44
www.elsevier.com/locate/disc

The Terwilliger algebra of an almost-bipartite
P- and Q-polynomial association scheme

John S. Caughman, Mark S. MacLean, Paul M. Terwilliger
Mathematics Department, University of North Carolina at Asheville, One University Heights CPO 2350,

Asheville 28804, USA

Received 18 March 2003; received in revised form 29 November 2004; accepted 16 December 2004

Abstract

Let Y denote aD-class symmetric association scheme withD�3, and supposeY is almost-
bipartite P- and Q-polynomial. Letx denote a vertex ofY and letT = T (x) denote the corresponding
Terwilliger algebra. We prove that any irreducibleT -moduleW is both thin and dual thin in the sense
of Terwilliger. We produce two bases forW and describe the action ofT on these bases. We prove
that the isomorphism class ofW as aT -module is determined by two parameters, the dual endpoint
and diameter ofW . We find a recurrence which gives the multiplicities with which the irreducibleT -
modules occur in the standard module. We compute this multiplicity for those irreducibleT -modules
which have diameter at leastD − 3.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The Terwilliger algebra of a commutative association scheme was introduced in[23].
This algebra is a finite-dimensional, semisimpleC-algebra, and is noncommutative in gen-
eral. The Terwilliger algebra has been used to study P- and Q-polynomial schemes[5,23],
group schemes[1,3], strongly regular graphs[27], Doob schemes[21], and schemes over
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the Galois rings of characteristic four[17]. Other work involving this algebra can be found
in [6–9,11,13–16,18,25,26,28].

The Terwilliger algebra is particularly well-suited for studying P- and Q-polynomial
schemes; nevertheless, it is apparent from[23] that the intersection numbers of these
schemes do not completely determine the structure of the algebra. In this article, we con-
sider the Terwilliger algebra of an almost-bipartite P- and Q-polynomial scheme. We show
that with the added almost-bipartite assumption, the intersection numbers of the scheme
completely determine the structure of the algebra.

To describe our results, letY = (X, {Ri}0� i�D) denote a symmetric association scheme
with D�3. SupposeY is almost-bipartite P- and Q-polynomial. Fix anyx ∈ X, and let
T = T (x) denote the Terwilliger algebra ofY with respect tox. T acts faithfully on the
vector spaceCX by matrix multiplication; we refer toCX as thestandard module. SinceT
is semisimple,CX decomposes into a direct sum of irreducibleT -modules.

LetW denote an irreducibleT -module contained inCX. We show thatW is thin and dual
thin in the sense of Terwilliger (Lemma 10.3). We produce two bases forW with respect
to which the action ofT is particularly simple (Theorem 8.1). To describe this action, we
use two sets of scalars, theintersection numbersof W and thedual intersection numbers
of W . We compute these scalars in terms of the eigenvalues ofY , the dual eigenvalues of
Y , and two additional parameters, called thedual endpointanddiameterof W (Theorems
11.4, 12.4). We show that the dual endpoint and diameter ofW determine its isomorphism
class as aT -module (Theorem 14.1).

Combining our above results, we find a recurrence which gives the multiplicities with
which the irreducibleT -modules occur inCX (Theorem 16.6). We compute this multiplicity
for those irreducibleT -modules which have diameter at leastD − 3. (Example 16.8).

In a future paper, we intend to use these results to study the subconstituents of an almost-
bipartite P- and Q-polynomial scheme. We hope this will produce a classification of these
schemes. Our work is closely related to that of Curtin concerning 2-thin distance-regular
graphs[8].

2. Association schemes

Definition 2.1. By a symmetric association scheme(or schemefor short) we mean a pair
Y = (X, {Ri}0� i�D), whereX is a nonempty finite set,D is a nonnegative integer, and
R0, . . . , RD are nonempty subsets ofX ×X such that

(i) {Ri}0� i�D is a partition ofX ×X;
(ii) R0 = {xx | x ∈ X};

(iii) Rt
i = Ri for 0� i�D, whereRt

i = {yx | xy ∈ Ri};
(iv) For all h, i, j (0�h, i, j�D), and for allx, y ∈ X such thatxy ∈ Rh, the scalar

phij = |{z ∈ X|xz ∈ Ri,andzy ∈ Rj }|

is independent ofx, y.

The constantsphij are called theintersection numbers of Y.
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For the rest of this section, letY=(X, {Ri}0� i�D) denote a scheme. We begin with a few
comments about the intersection numbers ofY . For all integersi (0� i�D), setki := p0

ii ,
and note thatki 	= 0 sinceRi is nonempty. We refer toki as theith valencyof Y . Observe
thatp0

ij = �ij ki (0� i, j�D).
We now recall the Bose–Mesner algebra ofY . Let MatX(C) denote theC-algebra of

matrices with entries inC, where the rows and columns are indexed byX. For each integer
i (0� i�D), letAi denote the matrix in MatX(C) with xy-entry

(Ai)xy =
{

1 if xy ∈ Ri
0 if xy /∈Ri (x, y ∈ X). (1)

We refer toAi as theith associate matrix of Y. By Definition 2.1, the associate matrices
satisfy: (i)A0 = I , whereI is the identity matrix in MatX(C); (ii) the conjugate-transpose
A

t
i=Ai (0� i�D); (iii) A0+A1+· · ·+AD=J , whereJ is the all 1’s matrix in MatX(C);

(iv) AiAj = ∑D
h=0p

h
ijAh (0� i, j�D).

It follows from (i)–(iv) thatA0, . . . , AD form a basis for a subalgebraM of MatX(C).
M is known as theBose–Mesner algebra of Y. Observe thatM is commutative, since the
associate matrices are symmetric.

By Brouwer et al.[4, p. 45], the algebraM has a second basisE0, . . . , ED satisfying:
(i) E0 = |X|−1J ; (ii) E

t
i = Ei (0� i�D); (iii) EiEj = �ijEi (0� i, j�D); (iv) E0 +

E1 + · · · + ED = I . We refer toEi as theith primitive idempotent of Yfor 0� i�D. For
convenience we defineEi := 0 for i >D andi <0.

For all integersi (0� i�D), setmi := rank(Ei), and note thatmi 	= 0. We refer tomi
as theithmultiplicity of Y.

SinceA0, . . . , AD andE0, . . . , ED are both bases forM, there exist complex scalars
pi(j), qi(j) (0� i, j�D) which satisfy

Ai =
D∑
j=0

pi(j)Ej (0� i�D), (2)

Ei = |X|−1
D∑
j=0

qi(j)Aj (0� i�D). (3)

By Bannai and Ito[2, pp. 59, 63], thepi(j), qi(j) are real. We refer topi(j) (resp.qi(j))
as thej th eigenvalue(resp.j th dual eigenvalue) associated withAi (resp.Ei). By Bannai
and Ito[2, p. 63], the eigenvalues and dual eigenvalues satisfy

pi(j)

ki
= qj (i)

mj
(0� i, j�D).

We now recall the Krein parameters ofY . Observe thatAi ◦ Aj = �ijAi (0� i, j�D),
where◦ denotes the entry-wise matrix product. It follows thatM is closed under◦, so
there exist complex scalarsqhij satisfyingEi ◦Ej = |X|−1∑D

h=0 q
h
ijEh (0� i, j�D). The

constantsqhij are called theKrein parametersof Y . By Bannai and Ito[2, pp. 67–69], the

Krein parameters are real, andq0
ij = �ijmi (0� i, j�D).



20 J.S. Caughman et al. / Discrete Mathematics 292 (2005) 17–44

We now recall the dual Bose–Mesner algebra ofY . For the rest of this section, fix any
x ∈ X. For each integeri (0� i�D), letE∗

i =E∗
i (x)denote the diagonal matrix in MatX(C)

with yy-entry

(E∗
i )yy =

{
1 if xy ∈ Ri
0 if xy /∈Ri (y ∈ X). (4)

We refer toE∗
i as theithdual idempotent ofY with respect to x. For convenience, setE∗

i := 0

if i >D or i <0. From the definition, the dual idempotents satisfy: (i)E∗
i

t =E∗
i (0� i�D);

(ii) E∗
i E

∗
j = �ijE∗

i (0� i, j�D); (iii) E∗
0 + E∗

1 + · · · + E∗
D = I .

It follows that the matricesE∗
0, . . . , E

∗
D form a basis for a subalgebraM∗ =M∗(x) of

MatX(C). M∗ is known as thedual Bose–Mesner algebra of Y with respect to x. Observe
thatM∗ is commutative since the dual idempotents are diagonal.

For each integeri (0� i�D), letA∗
i = A∗

i (x) denote the diagonal matrix in MatX(C)
with yy-entry

(A∗
i )yy = |X|(Ei)xy (y ∈ X). (5)

We refer toA∗
i as theith dual associate matrix of Y with respect to x. Combining (2), (3)

with (4), (5),

A∗
i =

D∑
j=0

qi(j)E
∗
j (0� i�D), (6)

E∗
i = |X|−1

D∑
j=0

pi(j)A
∗
j (0� i�D). (7)

It follows thatA∗
0, . . . , A

∗
D form a second basis forM∗.

From the definitions, the dual associate matrices satisfy: (i)A∗
0 = I ; (ii) A∗

i

t = A∗
i

(0� i�D); (iii) A∗
i A

∗
j = ∑D

h=0 q
h
ijA

∗
h (0� i, j�D); (iv) A∗

0 + A∗
1 + · · · + A∗

D = |X|E∗
0.

3. The Terwilliger algebra and its modules

Let Y = (X, {Ri}0� i�D) denote a scheme. Fix anyx ∈ X, and writeM∗ = M∗(x).
Let T = T (x) denote the subalgebra of MatX(C) generated byM andM∗. We callT the
Terwilliger algebra of Y with respect to x.

In [23, Lemma 3.2], it is shown that for all integersh, i, j (0�h, i, j�D),

phij = 0 if and only if E∗
i AjE

∗
h = 0, (8)

qhij = 0 if and only if EiA
∗
jEh = 0, (9)

whereA∗
i = A∗

i (x), E
∗
i = E∗

i (x) (0� i�D).
Let V denote the vector spaceCX (column vectors), where the coordinates are indexed

byX. Then MatX(C) acts onV by left multiplication. We endowV with the inner product
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〈 , 〉 satisfying〈u, v〉 := utv for all u, v ∈ V . Observe thatV = ∑D
i=0EiV (orthogonal

direct sum). Similarly, we have the decompositionV =∑D
i=0E

∗
i V (orthogonal direct sum).

By aT-module, we mean a subspaceW of V such thatTW ⊆ W . We refer toV itself
as thestandard modulefor T . LetW ,W ′ denoteT -modules. By aT-module isomorphism
fromW toW ′, we mean an isomorphism of vector spaces� : W → W ′ such that

(B� − �B)W = 0 (∀B ∈ T ).
W , W ′ are said to beT-isomorphicwhenever there exists aT -module isomorphism from
W to W ′. A T -moduleW is said to beirreduciblewheneverW 	= 0 andW contains no
T -modules other than 0 andW .

BecauseT is closed under the conjugate-transpose map,T is semisimple. It follows that
for anyT -moduleW and anyT -moduleU ⊆ W there exists a uniqueT -moduleU ′ ⊆ W

such that

W = U + U ′ (orthogonal direct sum).

Moreover,W is an orthogonal direct sum of irreducibleT -modules.
Now letW denote an irreducibleT -module. Observe that

W =
∑

E∗
i W (orthogonal direct sum), (10)

where the sum is taken over all the indicesi (0� i�D) such thatE∗
i W 	= 0. We set

d := |{i |E∗
i W 	= 0}| − 1, and observe that the dimension ofW is at leastd + 1. We refer

to d as thediameterofW .W is said to bethinwhenever dim(E∗
i W)�1 (0� i�D). Note

thatW is thin if and only if the diameter ofW equals dim(W)− 1.
Similarly,

W =
∑

EiW (orthogonal direct sum),

where the sum is taken over all the indicesi (0� i�D) such thatEiW 	= 0. We setd∗ :=
|{i |EiW 	= 0}| − 1, and observe that the dimension ofW is at leastd∗ + 1. We refer tod∗
as thedual diameterof W .W is said to bedual thinwhenever dim(EiW)�1 (0� i�D).
Note thatW is dual thin if and only if the dual diameter ofW equals dim(W)− 1.

We wish to emphasize the following point, which follows immediately from the above
discussion.

Lemma 3.1. LetY=(X, {Ri}0� i�D)denote a scheme.Fix anyx ∈ X,andwriteT=T (x).
Let W denote an irreducible T-module that is both thin and dual thin. Then the diameter
and dual diameter of W are equal.

4. The P-polynomial property

LetY=(X, {Ri}0� i�D) denote a scheme. We say thatY isP-polynomial(with respect to
the orderingR0, . . . , RD of the associate classes) whenever for all integersh, i, j (0�h, i,
j�D),

phij = 0 if one ofh, i, j is greater than the sum of the other two, (11)
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phij 	= 0 if one ofh, i, j equals the sum of the other two. (12)

For the rest of this section, assumeY is P-polynomial.We abbreviateci := pi1i−1 (1� i�D),
ai := pi1i (0� i�D), bi := pi1i+1 (0� i�D − 1), and definec0 := 0, bD := 0. We note
thata0 = 0 andc1 = 1. By Bannai and Ito[2, Proposition III.1.2],

ki = b0b1 · · · bi−1

c1c2 · · · ci (0� i�D).

Of particular interest are the matrixA := A1 and the scalars�i := p1(i) (0� i�D). It
follows from (2) that

AEi = �iEi (0� i�D). (13)

It is shown in[2, p. 190]that

�i 	= �j if i 	= j (0� i, j�D), (14)

and also thatAi = vi(A) (0� i�D), wherevi is a polynomial with real coefficients and
degree exactlyi. In particular,A multiplicatively generatesM, the Bose–Mesner algebra.
By (2), it follows that

pi(j)= vi(�j ) (0� i, j�D).

We now recall the raising, lowering, and flat matrices ofY . Fix anyx ∈ X, and write
E∗
i = E∗

i (x) (0� i�D). Define matricesR = R(x), F = F(x), L= L(x) by

R :=
D∑
i=0

E∗
i+1AE

∗
i , F :=

D∑
i=0

E∗
i AE

∗
i , L :=

D∑
i=0

E∗
i−1AE

∗
i . (15)

Note thatR, F , andL have real entries by (1) and (4). Also, observe thatF is symmetric
andR = Lt. By (8) and (11),

A= R + F + L. (16)

Using (15) and recallingE∗−1 = 0,E∗
D+1 = 0, we find

RE∗
i = E∗

i+1R (−1� i�D), FE∗
i = E∗

i F (0� i�D),
LE∗

i = E∗
i−1L (0� i�D + 1). (17)

5. TheT -modules of P-polynomial schemes

In this section, we describe the irreducibleT -modules of P-polynomial schemes.
Let Y = (X, {Ri}0� i�D) denote a scheme which is P-polynomial with respect to the

orderingR0, . . . , RD of the associate classes. Fix anyx ∈ X and writeT = T (x). LetW
denote an irreducibleT -module. We define theendpointr of W by

r := min{i | 0� i�D,E∗
i W 	= 0}.

We observe that 0�r�D − d, whered denotes the diameter ofW .
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In [23, Lemma 3.9], it was shown thatRE∗
i W 	= 0 (r� i < r + d), LE∗

i W 	= 0
(r < i�r + d), and also that

E∗
i W 	= 0 iff r� i�r + d (0� i�D). (18)

By Caughman IV[5, Lemma 5.1], we have

2r + d∗ �D,

whered∗ denotes the dual diameter ofW .

Lemma 5.1(Terwilliger [23, Lemma 3.9]). Let Y = (X, {Ri}0� i�D) denote a scheme
which is P-polynomial with respect to the orderingR0, . . . , RD of the associate classes. Fix
anyx ∈ X, and writeE∗

i =E∗
i (x) (0� i�D), T = T (x). LetW denote a thin, irreducible

T-module with endpoint r. Then

(i) W =ME∗
rW .

(ii) EiW = EiE
∗
r W (0� i�D).

(iii) W is dual thin.

6. The Q-polynomial property

LetY=(X, {Ri}0� i�D) denote a scheme. We say thatY isQ-polynomial(with respect to
the given orderingE0, E1, . . . , ED of the primitive idempotents) whenever for all integers
h, i, j (0�h, i, j�D), the Krein parameters satisfy

qhij = 0 if one ofh, i, j is greater than the sum of the other two,

qhij 	= 0 if one ofh, i, j equals the sum of the other two.

For the rest of this section, assumeY is Q-polynomial with respect to the ordering
E0, . . . , ED. We abbreviatec∗i := qi1i−1 (1� i�D), a∗

i := qi1i (0� i�D), b∗
i := qi1i+1

(0� i�D−1), and definec∗0 := 0, b∗
D := 0. We note thata∗

0 =0 andc∗1 =1 [2, Proposition
II.3.7]. By Bannai and Ito[2, p. 196],

mi = b∗
0b

∗
1 · · · b∗

i−1

c∗1c∗2 · · · c∗i
(0� i�D).

Fix anyx ∈ X and writeE∗
i = E∗

i (x), A
∗
i = A∗

i (x) (0� i�D). Of particular interest are
the matrixA∗ := A∗

1(x) and the scalars�∗
i := q1(i) (0� i�D). By (6),

A∗E∗
i = �∗

i E
∗
i (0� i�D). (19)

It is shown in[2, p. 193]that

�∗
i 	= �∗

j if i 	= j (0� i, j�D), (20)
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and also thatA∗
i = v∗

i (A
∗) (0� i�D), wherev∗

i is a polynomial with real coefficients and
degree exactlyi. In particular,A∗ generates the dual Bose–Mesner algebraM∗ =M∗(x).
By (6), it follows that

qi(j)= v∗
i (�

∗
j ) (0� i, j�D).

We now recall the dual raising, lowering, and flat matrices ofY . Define the matrices
R∗ = R∗(x), F ∗ = F ∗(x), L∗ = L∗(x) by

R∗ :=
D∑
i=0

Ei+1A
∗Ei, F ∗ :=

D∑
i=0

EiA
∗Ei, L∗ :=

D∑
i=0

Ei−1A
∗Ei. (21)

Note thatR∗,F ∗, andL∗ have real entries by (6), and since theqi(j) are real. Also, observe
thatF ∗ is symmetric andR∗ = L∗t . Moreover,

A∗ = R∗ + F ∗ + L∗. (22)

Using (21) and recallingE−1 = 0,ED+1 = 0, we find

R∗Ei = Ei+1R
∗ (−1� i�D), F ∗Ei = EiF

∗ (0� i�D),
L∗Ei = Ei−1L

∗ (0� i�D + 1). (23)

7. TheT -modules of Q-polynomial schemes

In this section, we describe the irreducibleT -modules of Q-polynomial schemes.
Let Y = (X, {Ri}0� i�D) denote a scheme which is Q-polynomial with respect to the

orderingE0, . . . , ED of the primitive idempotents. Fix anyx ∈ X and writeT = T (x). Let
W denote an irreducibleT -module. We define thedual endpointt of W by

t := min{i | 0� i�D, EiW 	= 0}.
We observe that 0� t�D − d∗, whered∗ denotes the dual diameter ofW .

In [23, Lemma 3.12], it was shown thatR∗EiW 	= 0 (t� i < t + d∗), L∗EiW 	=
0 (t < i� t + d∗), and also that

EiW 	= 0 iff t� i� t + d∗ (0� i�D). (24)

By Caughman IV[5, Lemma 7.1], we have

2t + d�D, (25)

whered denotes the diameter ofW .

Lemma 7.1(Terwilliger [23, Lemma 3.12]). Let Y = (X, {Ri}0� i�D) denote a scheme
which is Q-polynomial with respect to the orderingE0, . . . , ED of the primitive idempo-
tents. Fix anyx ∈ X, and writeE∗

i = E∗
i (x) (0� i�D), M∗ =M∗(x), T = T (x). Let W
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denote a dual thin, irreducible T-module with dual endpoint t. Then(i)–(iii) hold below.

(i) W =M∗EtW .
(ii) E∗

i W = E∗
i EtW (0� i�D).

(iii) W is thin.

8. TheT -modules of P- and Q-polynomial schemes

LetY = (X, {Ri}0� i�D) denote a scheme which is P-polynomial with respect to the or-
deringR0, . . . , RD of the associate classes, and Q-polynomial with respect to the ordering
E0, . . . , ED of the primitive idempotents. Fix anyx ∈ X and writeT=T (x). LetW denote a
thin irreducibleT -module. ObserveW is dual thin by Lemma 5.1, and the diameter and dual
diameter ofW coincide by Lemma 3.1. We now present two bases forW , one of which diag-
onalizesA and the other diagonalizesA∗. We then consider the action ofT on these bases.

Theorem 8.1. LetY = (X, {Ri}0� i�D) denote a scheme which is P-polynomial with re-
spect to the orderingR0, . . . , RD of the associate classes,andQ-polynomial with respect to
the orderingE0, . . . , ED of the primitive idempotents. Fix anyx ∈ X,andwriteE∗

i =E∗
i (x)

(0� i�D), T =T (x). LetW denote a thin irreducible T-module with endpoint r, dual end-
point t, and diameter d.

(i) For all nonzerov ∈ EtW , the vectorE∗
i v is a basis forE

∗
i W for r� i�r+d.Moreover,

E∗
r v, E

∗
r+1v, . . . , E

∗
r+dv is a basis for W.

(ii) For all nonzerov ∈ E∗
r W , the vectorEiv is a basis forEiW for t� i� t+d.Moreover,

Etv,Et+1v, . . . , Et+dv is a basis for W.

Proof. (i) RecallW is dual thin by Lemma 5.1 sov spansEtW . Fix anyi (r� i�r+d), and
observeE∗

i W 	= 0 by (18).AlsoE∗
i v spansE∗

i W , since by Lemma 7.1 and the construction,

E∗
i W = E∗

i EtW

= span(E∗
i v).

We have now shown thatE∗
i v is a basis forE∗

i W . Applying (10), (18), we findE∗
r v, . . . ,

E∗
r+dv is a basis forW .
(ii) Similar to the proof of (i). �

Definition 8.2. Let Y = (X, {Ri}0� i�D) denote a scheme which is P-polynomial with
respect to the orderingR0, . . . , RD of the associate classes, and Q-polynomial with respect
to the orderingE0, . . . , ED of the primitive idempotents. Fix anyx ∈ X, and writeE∗

i =
E∗
i (x) (0� i�D), T = T (x). LetW denote a thin irreducibleT -module with endpointr,

dual endpointt , and diameterd. For all i (0� i�d), let ci(W), ai(W), bi(W) denote the
complex scalars such that

RE∗
r+i−1v = ci(W)E

∗
r+iv, (26)

FE∗
r+iv = ai(W)E

∗
r+iv, (27)

LE∗
r+i+1v = bi(W)E

∗
r+iv, (28)
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wherev is any nonzero vector inEtW . SinceEtW has dimension 1, we seeci(W), ai(W),
bi(W) are independent of the choice ofv. We refer to theci(W), ai(W), bi(W) as the
intersection numbersofW . We observec0(W)= 0,bd(W)= 0. By theintersection matrix
of W , we mean the tridiagonal matrix

B(W) :=




a0(W) b0(W) 0
c1(W) a1(W) b1(W)

c2(W) · ·
· · ·

· · bd−1(W)

0 cd(W) ad(W)



.

Definition 8.3. Let Y = (X, {Ri}0� i�D) denote a scheme which is P-polynomial with
respect to the orderingR0, . . . , RD of the associate classes, and Q-polynomial with respect
to the orderingE0, . . . , ED of the primitive idempotents. Fix anyx ∈ X, and writeE∗

i =
E∗
i (x) (0� i�D), T = T (x). LetW denote a thin irreducibleT -module with endpointr,

dual endpointt , and diameterd. For all i (0� i�d), let c∗i (W), a∗
i (W), b

∗
i (W) denote the

complex scalars such that

R∗Et+i−1v = c∗i (W)Et+iv, (29)

F ∗Et+iv = a∗
i (W)Et+iv, (30)

L∗Et+i+1v = b∗
i (W)Et+iv, (31)

wherev is any nonzero vector inE∗
r W . SinceE∗

r W has dimension 1, we seec∗i (W), a∗
i (W),

b∗
i (W) are independent of the choice ofv. We refer to thec∗i (W), a∗

i (W), b
∗
i (W) as thedual

intersection numbersof W . We observec∗0(W) = 0, b∗
d(W) = 0. By thedual intersection

matrixof W , we mean the tridiagonal matrix

B∗(W) :=




a∗
0(W) b∗

0(W) 0
c∗1(W) a∗

1(W) b∗
1(W)

c∗2(W) · ·
· · ·

· · b∗
d−1(W)

0 c∗d(W) a∗
d(W)



.

Lemma 8.4. LetY=(X, {Ri}0� i�D) denote a schemewhich is P-polynomial with respect
to the orderingR0, . . . , RD of the associate classes, and Q-polynomial with respect to
the orderingE0, . . . , ED of the primitive idempotents. Fix anyx ∈ X, and writeE∗

i =
E∗
i (x) (0� i�D), T = T (x). Let W denote a thin irreducible T-module with endpoint r,

dual endpoint t, and diameter d.

(i) B(W) is the matrix representing multiplication by A with respect to the basisE∗
r v,

E∗
r+1v, . . . , E

∗
r+dv, wherev is any nonzero vector inEtW .

(ii) Diag(�∗
r , �

∗
r+1, . . . , �

∗
r+d) is the matrix representing multiplication byA∗ with respect

to the basisE∗
r v, E

∗
r+1v, . . . , E

∗
r+dv, wherev is any nonzero vector inEtW .

(iii) B∗(W) is the matrix representing multiplication byA∗ with respect to the basisEtv,
Et+1v, . . . , Et+dv, wherev is any nonzero vector inE∗

r W .
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(iv) Diag(�t , �t+1, . . . , �t+d) is the matrix representing multiplication by A withrespect to
the basisEtv,Et+1v, . . . , Et+dv, wherev is any nonzero vector inE∗

r W .

Proof. (i) Immediate from (16) and Definition 8.2.
(ii) Immediate from (19).
(iii) Similar to the proof of (i).
(iv) Similar to the proof of (ii). �

Corollary 8.5. Let Y = (X, {Ri}0� i�D) denote a scheme which is P-polynomial with
respect to the orderingR0, . . . , RD of the associate classes, and Q-polynomial with respect
to theorderingE0, . . . , ED of theprimitive idempotents. Fix anyx ∈ X,andwriteT=T (x).
LetW denote a thin irreducible T-module with endpoint r, dual endpoint t, and diameterd.

(i) The eigenvalues ofB(W) are�t , �t+1, . . . , �t+d .
(ii) The eigenvalues ofB∗(W) are�∗

r , �
∗
r+1, . . . , �

∗
r+d .

Corollary 8.6. Let Y = (X, {Ri}0� i�D) denote a scheme which is P-polynomial with
respect to the orderingR0, . . . , RD of the associate classes, and Q-polynomial with respect
to the orderingE0, . . . , ED of the primitive idempotents. Fix anyx ∈ X, and writeE∗

i =
E∗
i (x) (0� i�D), T = T (x). Let W denote a thin irreducible T-module with endpointr,

dual endpointt , and diameterd. Then(i) and(ii) hold below.

(i)
∑d

i=0 ai(W)= ∑t+d
i=t �i .

(ii)
∑d

i=0 a
∗
i (W)= ∑r+d

i=r �∗
i .

Proof. (i) By Corollary 8.5(i), both sides of the equation in (i) equal the trace ofB(W).
(ii) By Corollary 8.5(ii), both sides of the equation in (ii) equal the trace ofB∗(W). �

9. Almost-bipartite P- and Q-polynomial schemes

Let Y = (X, {Ri}0� i�D) denote a scheme which is P-polynomial with respect to the
orderingR0, . . . , RD of the associate classes. We sayY is almost-bipartite(with respect to
the P-polynomial ordering) wheneverai = 0 for 0� i�D − 1 andaD 	= 0.

For the remainder of this article, we shall be concerned with P- and Q-polynomial schemes
for which the P-polynomial structure is almost-bipartite. We thus make the following defi-
nition.

Definition 9.1. Let Y = (X, {Ri}0� i�D) denote a scheme withD�3 which is almost-
bipartite P-polynomial with respect to the orderingR0, . . . , RD of the associate classes,
and Q-polynomial with respect to the orderingE0, . . . , ED of the primitive idempotents.
Fix anyx ∈ X, and writeT = T (x) to denote the Terwilliger algebra ofY with respect to
x. (Where the context allows, we will also suppress the reference tox for the individual
matrices inT , e.g.,E∗

0 = E∗
0(x), R = R(x), etc.).
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Lemma 9.2. Let Y be as in Definition9.1.Then(i)–(iii) hold below.

(i) E∗
i AE

∗
i = 0 (0� i�D − 1), andE∗

DAE
∗
D 	= 0.

(ii) F = E∗
DAE

∗
D, where F is the matrix from(15).

(iii) FE∗
i = 0 (0� i�D − 1).

Proof. (i) Immediate from (8) and the fact thatai = 0 (0� i�D − 1), aD 	= 0.
(ii), (iii) Immediate using (i). �

Theorem 9.3(Collins [7, Theorem 14.3]). With reference to Definition9.1, let W denote
an irreducible T-module with endpoint r and diameter d. Thenr + d =D.

10. Each irreducibleT -module is thin and dual thin

Let Y be as in Definition 9.1, and letW denote an irreducibleT -module. In this section,
we show thatW is both thin and dual thin.

Lemma 10.1.With reference to Definition9.1, let W denote an irreducible T-module with
dual endpoint t, and fix any nonzerov ∈ EtW . Then

(i) RE∗
i−1v + LE∗

i+1v = �tE∗
i v (0� i�D − 1),

(ii) RE∗
D−1v + FE∗

Dv = �tE∗
Dv.

Proof. Observe thatAv = �t v. Fix an integeri (0� i�D). Now by (16), (17), we have

RE∗
i−1v + FE∗

i v + LE∗
i+1v = E∗

i Av

= �tE∗
i v.

Assertion (i) follows sinceFE∗
i = 0 for 0� i�D− 1. Assertion (ii) similarly follows since

E∗
D+1 = 0. �

Lemma 10.2.With reference to Definition9.1, let W denote an irreducible T-module with
dual endpoint t, and fix any nonzerov ∈ EtW . Supposev is an eigenvector forF ∗ with
eigenvalue�. Then

(i) �∗
i−1RE

∗
i−1v + �∗

i+1LE
∗
i+1v = (�t+1�

∗
i − ��t+1 + ��t )E∗

i v (0� i�D − 1),
(ii) �∗

D−1RE
∗
D−1v + �∗

DFE
∗
Dv = (�t+1�

∗
D − ��t+1 + ��t )E∗

Dv,

where�D+1, �∗
−1 are indeterminates.

Proof. ObserveL∗v = 0 by (23), andF ∗v = �v by assumption, soR∗v = (A∗ − �I )v in
view of (22). SinceR∗v ∈ Et+1W by (23),

A(A∗ − �I )v = �t+1(A
∗ − �I )v. (32)
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Fix an integeri (0� i�D). We may now argue that

�∗
i−1RE

∗
i−1v + �∗

i FE
∗
i v + �∗

i+1LE
∗
i+1v

= (RE∗
i−1 + FE∗

i v + LE∗
i+1)A

∗v (by (19))

= E∗
i AA

∗v (by (16),(17))

= E∗
i A(A

∗ − �I )v + �E∗
i Av

= �t+1E
∗
i (A

∗ − �I )v + �t�E∗
i v (by (32))

= (�t+1(�
∗
i − �)+ ��t )E∗

i v (by (19)),

where�D+1, �∗
−1, �

∗
D+1 are indeterminates. Assertion (i) follows sinceFE∗

i =0 for 0� i�
D − 1. Assertion (ii) similarly follows sinceE∗

D+1 = 0. �

Lemma 10.3.With reference to Definition9.1,letW denote an irreducible T-module. Then
W is thin and dual thin.

Proof. Let t denote the dual endpoint ofW . SinceF ∗EtW ⊆ EtW , the spaceEtW contains
a nonzero eigenvectorv for F ∗. By Lemma 10.1,

RE∗
i−1v + LE∗

i+1v ∈ span(E∗
i v) (0� i�D − 1), (33)

RE∗
D−1v + FE∗

Dv ∈ span(E∗
Dv). (34)

By Lemma 10.2,

�∗
i−1RE

∗
i−1v + �∗

i+1LE
∗
i+1v ∈ span(E∗

i v) (0� i�D − 1), (35)

�∗
D−1RE

∗
D−1v + �∗

DFE
∗
Dv ∈ span(E∗

Dv), (36)

where�∗
−1 is indeterminate. By (33), (35), and (20), we find

RE∗
i v ∈ span(E∗

i+1v) (0� i�D − 2), LE∗
i v ∈ span(E∗

i−1v) (1� i�D).

By (34), (36), and (20), we findRE∗
D−1v ∈ span(E∗

Dv) andFE∗
Dv ∈ span(E∗

Dv). Com-
bining the above information with Lemma 9.2(iii) and recalling thatRE∗

D = 0,LE∗
0 = 0,

we see

RE∗
i v ∈ span(E∗

i+1v) (0� i�D), (37)

FE∗
i v ∈ span(E∗

i v) (0� i�D), (38)

LE∗
i v ∈ span(E∗

i−1v) (0� i�D). (39)

We claim that

W = span{E∗
0v,E

∗
1v, . . . , E

∗
Dv}. (40)

To see this, letW ′ denote the right side of (40). CertainlyW ′ ⊆ W ; to prove thatW ′ =W ,
we show thatW ′ is a nonzeroT -module. Observe thatv = ∑D

i=0E
∗
i v ∈ W ′, soW ′ 	= 0.

Observe thatM∗W ′ ⊆ W ′ by the construction. Observe thatRW ′ ⊆ W ′, FW ′ ⊆ W ′, and
LW ′ ⊆ W ′ by (37)–(39). Recall thatA= R + F + L generatesM, soMW ′ ⊆ W ′. Since
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M, M∗ generateT , we now have thatTW ′ ⊆ W ′, soW ′ is aT -module. It follows that
W ′ =W by the irreducibility ofW . We now have (40), which implies thatW is thin. By
Lemma 5.1,W is dual thin. �

We conclude this section with a comment.

Theorem 10.4.With reference to Definition9.1,letW denote an irreducible T-module with
diameterd�1,endpointr, and dual endpoint t. Then

a∗
0(W)= �∗

r+1�t − �t+1�
∗
r

�t − �t+1
. (41)

Proof. Fix any nonzerov ∈ EtW . Settingi = r in the equation in Lemma 10.1(i), we find
that

LE∗
r+1v = �tE∗

r v. (42)

By Lemma 10.3 and (30),v is an eigenvector forF ∗, with eigenvaluea∗
0(W). Settingi= r,

� = a∗
0(W) in the equation in Lemma 10.2(i), we find

�∗
r+1LE

∗
r+1v = (�t+1�

∗
r − a∗

0(W)(�t+1 − �t ))E∗
r v. (43)

EliminatingLE∗
r+1v in (43) using (42), and sinceE∗

r v 	= 0, we obtain

�∗
r+1�t − �t+1�

∗
r = a∗

0(W)(�t − �t+1),

and (41) follows. �

11. Computation of ci(W), ai(W), bi(W)

Let Y be as in Definition 9.1, and letW denote an irreducibleT -module with diameter
d. In this section, we compute the parametersci(W), ai(W), bi(W) (0� i�d). We begin
with ai(W).

Lemma 11.1.With reference to Definition9.1, let W denote an irreducible T-module with
diameter d. Then

(i) ai(W)= 0 (0� i�d − 1),
(ii) ad(W) 	= 0.

Proof. (i) Immediate from (27) and Lemma 9.2(iii).
(ii) Immediate from Theorem 9.3 and[7, Theorem 15.2]. �

Lemma 11.2.With reference to Definition9.1, let W denote an irreducible T-module with
dual endpoint t and diameterd. Then

(i) ci(W)+ bi(W)= �t (0� i�d − 1),
(ii) cd(W)+ ad(W)= �t .
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Proof. Fix any nonzerov ∈ EtW , and fix an integeri (0� i�d). Using (26)–(28), Lemma
10.1, and Lemma 9.2(iii), we find

(ci(W)+ ai(W)+ bi(W))E
∗
r+iv = (RE∗

r+i−1 + FE∗
r+i + LE∗

r+i+1)v

= �tE∗
r+iv.

SinceE∗
r+iv 	= 0 by Theorem 8.1(i), we have

ci(W)+ ai(W)+ bi(W)= �t (0� i�d).
We observeai(W) = 0 (0� i�d − 1) by Lemma 11.1 andbd(W) = 0 by Definition 8.2.
The result follows. �

Lemma 11.3.With reference to Definition9.1, let W denote an irreducible T-module with
endpoint r, dual endpoint t, and diameter d. Supposed�1.Then

(i) �∗
r+i−1ci(W)+ �∗

r+i+1bi(W)= �t�
∗
r+1 + �t+1�

∗
r+i − �t+1�

∗
r (0� i�d − 1),

(ii) �∗
r+d−1cd(W)+ �∗

r+dad(W)= �t�
∗
r+1 + �t+1�

∗
r+d − �t+1�

∗
r ,

where�∗
−1 is indeterminate.

Proof. Fix any nonzerov ∈ EtW , and fix any integeri (0� i�d). By (30), v is an
eigenvector forF ∗ with eigenvaluea∗

0(W). Using (26)–(28), Lemmas 9.2(iii), 10.2, and
(41), we find

(�∗
r+i−1ci(W)+ �∗

r+iai(W)+ �∗
r+i+1bi(W))E

∗
r+iv

= (�∗
r+i−1RE

∗
r+i−1 + �∗

r+iFE∗
r+i + �∗

r+i+1LE
∗
r+i+1)v

= (�t+1�
∗
r+i − a∗

0(W)�t+1 + a∗
0(W)�t )E

∗
r+iv

= (�t�
∗
r+1 + �t+1�

∗
r+i − �t+1�

∗
r )E

∗
r+iv,

where�∗
−1, �

∗
D+1 are indeterminates. RecallE∗

r+iv 	= 0 by Theorem 8.1(i). We observe
ai(W)= 0 (0� i�d − 1) by Lemma 11.1(i) andbd(W)= 0 by Definition 8.2. The result
follows. �

Theorem 11.4.With reference to Definition9.1,letW denote an irreducible T-module with
endpoint r,dual endpoint t,and diameter d. First assumed=0.Thenc0(W)=0,a0(W)=�t ,
andb0(W)= 0.Now assumed�1.Then

c0(W)= 0, (44)

ci(W)= �t (�
∗
r+i+1 − �∗

r+1)− �t+1(�
∗
r+i − �∗

r )

�∗
r+i+1 − �∗

r+i−1
(1� i�d − 1), (45)

cd(W)= �t (�
∗
r+d − �∗

r+1)− �t+1(�
∗
r+d − �∗

r )

�∗
r+d − �∗

r+d−1
, (46)

ai(W)= 0 (0� i�d − 1), (47)

ad(W)= �t (�
∗
r+d−1 − �∗

r+1)− �t+1(�
∗
r+d − �∗

r )

�∗
r+d−1 − �∗

r+d
, (48)
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b0(W)= �t , (49)

bi(W)= �t (�
∗
r+i−1 − �∗

r+1)− �t+1(�
∗
r+i − �∗

r )

�∗
r+i−1 − �∗

r+i+1
(1� i�d − 1), (50)

bd(W)= 0. (51)

In particular, ci(W), ai(W), bi(W) are real for0� i�d.

Proof. First assumed=0. We finda0(W)=�t by settingd=0 in the equation in Corollary
8.6(i). By Definition 8.2, we findc0(W)= 0, b0(W)= 0.

Now assumed�1. Eqs. (44), (51) are immediate from Definition 8.2, and Eq. (47) follows
from Lemma 11.1. Eq. (49) follows from Lemmas 11.2(i) and (44). To obtain (45) and (50),
solve the linear system determined by the equations in Lemmas 11.2(i) and 11.3(i) for the
variablesci(W), bi(W). We observe that the coefficient matrix of this system is nonsingular
since�∗

0, . . . , �
∗
D are distinct. To obtain (46) and (48), solve the linear system determined by

the equations in Lemmas 11.2(ii) and 11.3(ii) for the variablescd(W), ad(W). We observe
that the coefficient matrix of this system is nonsingular since�∗

0, . . . , �
∗
D are distinct. �

12. Computation of c∗i (W), a∗
i (W), b

∗
i (W)

Let Y be as in Definition 9.1, and letW denote an irreducibleT -module with diameter
d. In this section, we compute the parametersc∗i (W), a∗

i (W), b
∗
i (W) (0� i�d).

Lemma 12.1.With reference to Definition9.1, let W denote an irreducible T-module with
endpoint r and diameter d. Fix any integeri (0� i�d). Then

c∗i (W)+ a∗
i (W)+ b∗

i (W)= �∗
r . (52)

Proof. Let t denote the dual endpoint ofW . Pick any nonzerov ∈ E∗
r W , and observe that

A∗v = �∗
r v. We may now argue that

(c∗i (W)+ a∗
i (W)+ b∗

i (W))Et+iv
= (R∗Et+i−1 + F ∗Et+i + L∗Et+i+1)v (by Def. 8.3)

= Et+iA∗v (by (22), (23))

= �∗
rEt+iv.

The result now follows, sinceEt+iv 	= 0 by Theorem 8.1(ii). �

Lemma 12.2.With reference to Definition9.1, let W denote an irreducible T-module with
endpoint r, dual endpoint t, and diameter d. Supposed�1,and fix any integeri (0� i�d).
Then

�t+i−1c
∗
i (W)+ �t+ia∗

i (W)+ �t+i+1b
∗
i (W)= �∗

r+1�t+i , (53)

where�−1, �D+1 are indeterminates.
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Proof. Pick any nonzerov ∈ E∗
r W . Observer <D sinced�1, soFv = 0 by Lemma

9.2(iii). HenceAv = Rv ∈ E∗
r+1W. It follows that

A∗Av = �∗
r+1Av. (54)

We may now argue that

(�t+i−1c
∗
i (W)+ �t+ia∗

i (W)+ �t+i+1b
∗
i (W))Et+iv

= (�t+i−1R
∗Et+i−1 + �t+iF ∗Et+i + �t+i+1L

∗Et+i+1)v (by Def. 8.3)

= (R∗Et+i−1 + F ∗Et+i + L∗Et+i+1)Av (by (13))

= Et+iA∗Av (by (22), (23))

= �∗
r+1Et+iAv (by (54))

= �∗
r+1�t+iEt+iv (by (13)).

The result now follows, sinceEt+iv 	= 0 by Theorem 8.1(ii). �

Lemma 12.3.With reference to Definition9.1, let W denote an irreducible T-module with
endpoint r, dual endpoint t, and diameter d. Supposed�2,and fix any integeri (0� i�d).
Then

�2
t+i−1c

∗
i (W)+ �2

t+ia∗
i (W)+ �2

t+i+1b
∗
i (W)

= �∗
r+2�

2
t+i + b0(W)c1(W)(�

∗
r − �∗

r+2), (55)

where�−1, �D+1 are indeterminates.

Proof. For notational convenience, set� := b0(W)c1(W). Pick any nonzerov ∈ E∗
r W .

We first claim thatLRv=�v. To see this, observe by Theorem 8.1(i), there exists a nonzero
z ∈ EtW such thatv = E∗

r z. Applying Definition 8.2,

LRv = LRE∗
r z

= c1(W)LE
∗
r+1z

= b0(W)c1(W)E
∗
r z,

and the claim follows.
Observer+1<D sinced�2, soFv=0,FRv=0 by Lemma 9.2(iii). By these remarks,

the above claim, Eq. (16), and sinceLv = 0,

R2v = (R + F + L)2v − LRv

= (A2 − �I )v. (56)

By (56), and sinceR2v ∈ E∗
r+2V by (17),

A∗(A2 − �I )v = �∗
r+2(A

2 − �I )v. (57)
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We may now argue that

(�2
t+i−1c

∗
i (W)+ �2

t+ia∗
i (W)+ �2

t+i+1b
∗
i (W))Et+iv

= (�2
t+i−1R

∗Et+i−1 + �2
t+iF ∗Et+i + �2

t+i+1L
∗Et+i+1)v (by Def. 8.3)

= (R∗Et+i−1 + F ∗Et+i + L∗Et+i+1)A
2v (by (13))

= Et+iA∗A2v (by (22),(23))

= Et+iA∗(A2 − �I )v + �Et+iA∗v
= �∗

r+2(A
2 − �I )Et+iv + ��∗

rEt+iv (by (57))

= (�∗
r+2(�

2
t+i − �)+ ��∗

r )Et+iv (by (13)).

The result now follows, sinceEt+iv 	= 0 by Theorem 8.1(ii). �

Theorem 12.4.With reference to Definition9.1,letW denote an irreducible T-module with
endpoint r,dual endpoint t,anddiameter d. First assumed=0.Thenc∗0(W)=0,a∗

0(W)=�∗
r ,

b∗
0(W)= 0.Now assumed�1.Then

c∗0(W)= 0, (58)

c∗i (W)= (�2
t+i − �2

t )(�
∗
r+2 − �∗

r+1)+ (�t�t+1 − �t+i�t+i+1)(�
∗
r+1 − �∗

r )

(�t+i−1 − �t+i )(�t+i−1 − �t+i+1)

(1� i�d − 1), (59)

c∗d(W)= �t+d(�∗
r+1 − �∗

r )

�t+d−1 − �t+d
, (60)

b∗
0(W)= �t (�

∗
r − �∗

r+1)

�t − �t+1
, (61)

b∗
i (W)= (�2

t+i − �2
t )(�

∗
r+2 − �∗

r+1)+ (�t�t+1 − �t+i�t+i−1)(�
∗
r+1 − �∗

r )

(�t+i+1 − �t+i )(�t+i+1 − �t+i−1)

(1� i�d − 1), (62)

b∗
d(W)= 0, (63)

a∗
i (W)= �∗

r − b∗
i (W)− c∗i (W) (0� i�d). (64)

In particular, c∗i (W), a∗
i (W), b

∗
i (W) are real for0� i�d.

Proof. First assumed=0. We finda∗
0(W)=�∗

r by settingd=0 in the equation in Corollary
8.6(ii). By Definition 8.3, we findc∗0(W)= 0, b∗

0(W)= 0.
Now assumed�1. Eqs. (58), (63) follow from Definition 8.3. Eq. (64) follows from

(52). We obtain (60) by settingi = d in (52), (53), and solving forc∗d(W), using (63). We
now have (60), and Eq. (61) is obtained similarly.

It remains to prove (59) and (62). Assumed�2 and fix anyi (1� i�d − 1). Observe
(52), (53), and (55) form a system of three linear equations in the three variablesc∗i (W),
a∗
i (W), andb∗

i (W). Observe the coefficient matrix is Vandermonde, hence nonsingular,
since�0, . . . , �D are distinct. Solving this system, we obtain (59) and (62).�
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13. Some comments on the intersection numbers

Let Y be as in Definition 9.1, and letW denote an irreducibleT -module with diameter
d. In this section, we show the expressionsbi−1(W)ci(W) andb∗

i−1(W)c
∗
i (W) are positive

for 1� i�d.

Lemma 13.1.With reference to Definition9.1, let W denote an irreducible T-module with
endpoint r, dual endpoint t, and diameter d.

(i) For any nonzerov ∈ EtW ,

ci(W)‖E∗
r+iv‖2 = bi−1(W)‖E∗

r+i−1v‖2 (1� i�d).

(ii) For any nonzerov ∈ E∗
r W ,

c∗i (W)‖Et+iv‖2 = b∗
i−1(W)‖Et+i−1v‖2 (1� i�d).

Proof. (i) By (26), (28), and sinceR = L
t
,

ci(W)‖E∗
r+iv‖2 = 〈RE∗

r+i−1v,E
∗
r+iv〉

= 〈E∗
r+i−1v, LE

∗
r+iv〉

= bi−1(W)‖E∗
r+i−1v‖2.

Recall thatbi−1(W) is real by Theorem 11.4, so the result follows.
(ii) Similar to the proof of (i). �

Corollary 13.2. With reference toDefinition9.1,letWdenote an irreducible T-modulewith
diameter d. Then

(i) bi−1(W)ci(W)>0 (1� i�d),
(ii) b∗

i−1(W)c
∗
i (W)>0 (1� i�d).

Proof. (i) Let r denote the endpoint ofW . The productbi−1(W)ci(W) is nonnegative by
Lemma 13.1(i), and since‖E∗

r+iv‖2 and‖E∗
r+i−1v‖2 are positive. Observebi−1(W) 	= 0

by (28) and the previously mentioned fact thatLE∗
i W 	= 0 (r < i�r + d). Similarly,

ci(W) 	= 0 by (26) and the fact thatRE∗
i W 	= 0 (r� i < r + d).

(ii) Similar to the proof of (i). �

14. The isomorphism classes of irreducibleT -modules

With reference to Definition 9.1, in this section we prove that the isomorphism class of
any given irreducibleT -module is determined by its dual endpoint and diameter.

Theorem 14.1.With reference to Definition9.1, letW , W ′ denote irreducible T-modules
with endpoints r, r ′,dual endpointst , t ′,anddiametersd,d ′, respectively.Then the following
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are equivalent:

(i) W andW ′ are isomorphic as T-modules.
(ii) t = t ′ andd = d ′.

(iii) t = t ′ andr = r ′.
(iv) B(W)= B(W ′).
(v) t = t ′ andB∗(W)= B∗(W ′).

Proof. (i) → (ii) Let � denote aT -isomorphism fromW to W ′. Then for any integer
i (0� i�D),

EiW = 0 ⇔ �(EiW)= 0 ⇔ Ei�(W)= 0 ⇔ EiW
′ = 0.

Now (ii) follows by (24) and sinced = d∗.
(ii) ↔ (iii) Immediate by Theorem 9.3.
(ii), (iii) → (v) By Theorem 11.4, the entries in the intersection matrix are determined

by the endpoint, dual endpoint, and diameter.
(ii), (iii) → (v) By Theorem 12.4, the entries in the dual intersection matrix are determined

by the endpoint, dual endpoint, and diameter.
(iv) → (ii) B(W) is ad+1 byd+1 matrix, andB(W ′) is d ′ +1 byd ′ +1, sod=d ′. By

Lemmas 11.1 and 11.2, the sum of the entries in each row ofB(W) equals�t , and the sum
of the entries in each row ofB(W ′) equals�t ′ . Hence�t = �t ′ , sot = t ′ in view of (14).

(v) → (i) B∗(W) is ad + 1 byd + 1 matrix, andB∗(W ′) is d ′ + 1 byd ′ + 1, sod = d ′.
Now r = r ′ by Theorem 9.3. Pick a nonzerov ∈ E∗

r W and recall by Theorem 8.1(ii)
thatEtv, . . . , Et+dv is a basis forW . Similarly, pick a nonzerov′ ∈ E∗

r W
′, and observe

Etv
′, . . . , Et+dv′ is a basis forW ′. By linear algebra, there exists an isomorphism of vector

spaces� : W → W ′ such that

� : Eiv �→ Eiv
′ (t� i� t + d). (65)

We show� is an isomorphism ofT -modules. SinceA∗, E0, . . . , ED generateT , and since
A∗ = R∗ + F ∗ + L∗, it suffices to show

(R∗� − �R∗)W = 0, (66)

(F ∗� − �F ∗)W = 0, (67)

(L∗� − �L∗)W = 0, (68)

(Ej� − �Ej)W = 0 (0�j�D). (69)

Eq. (69) is immediate from the construction. To see (66), observe thatc∗i (W) = c∗i (W ′)
(0� i�d). Now by (29),R∗�−�R∗ vanishes onEt+iv (0� i�d). Eq. (66) follows. Eqs.
(67), (68) are proven similarly. �

We conclude this section with a few comments.

Lemma 14.2(Terwilliger [25, Theorem 4.1]). With reference to Definition9.1,there exists
a unique irreducible T-moduleW0 with diameter D. The endpoint and dual endpoint ofW0
are both zero. We refer toW0 as the trivial T-module.
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Lemma 14.3(Terwilliger [25, Theorem 4.1]). With reference to Definition9.1, let W0
denote the trivial module for Y. Then

(i) ci(W0)= ci, ai(W0)= ai, bi(W0)= bi (0� i�D),
(ii) c∗i (W0)= c∗i , a∗

i (W0)= a∗
i , b

∗
i (W0)= b∗

i (0� i�D).

15. The parameters in terms ofq and s

With reference to Definition 9.1, we now explicitly compute the intersection matrices
and dual intersection matrices of the irreducibleT -modules. For convenience, we exclude
a small class of examples.

LetD denote any integer at least 3. LetOD+1 denote the odd graph with diameterD, and
let �2D+1 denote the folded(2D + 1)-cube[4, pp. 259,264]. It is well-known thatOD+1,
�2D+1 are almost-bipartite P- and Q-polynomial schemes with diameterD. In [20], it was
shown thatOD+1 is uniquely determined by its intersection numbers. By Brouwer et al.[4,
p. 264], �2D+1 is uniquely determined by its intersection numbers. For more information
on the structure of the irreducibleT -modules for these schemes, see[26].

Lemma 15.1.With reference to Definition9.1,supposeY is not one ofOD+1, �2D+1.Then
there exist scalarsq, s, h, h∗ ∈ C, with q, h, h∗ nonzero, such that

�i = �0 + h(1 − qi)(1 − sqi+1)q−i (0� i�D), (70)

�∗
i = �∗

0 + h∗(1 − qi)(1 − q−2D−1+i )q−i (0� i�D). (71)

Proof. By Brouwer et al.[4, pp. 237, 240], there exist scalars�, �, �∗ ∈ R such that

�i−1 − ��i + �i+1 = � (1� i�D − 1), (72)

�∗
i−1 − ��∗

i + �∗
i+1 = �∗ (1� i�D − 1). (73)

We show� 	= 2, � 	= −2. First, suppose� = 2. By Brouwer et al.[4, Theorem 1.11.1],
there exists a bipartite P-polynomial schemeY ′ whose quotient scheme isY . Applying [19,
Theorems 10.4,15.2]to Y ′, we findY is �2D+1, a contradiction. Therefore� 	= 2.

Now suppose�=−2. Then by Terwilliger[22, Theorem 2], Y must beOD+1 or �2D+1,
a contradiction. Therefore� 	= −2.

Since� 	= 2 and� 	= −2, there existsq ∈ C such thatq /∈ {1,0,−1}, and such that
� = q + q−1. Solving the recurrence in (72), we obtain

�i = hq−i + h′qi + h′′ (0� i�D) (74)

for someh, h′, h′′ ∈ C. By (14),h, h′ are not both zero. Replacingq by q−1 if necessary,
we may assumeh 	= 0. Now there existss ∈ C such thath′ = sqh. Eliminatingh′ in (74)
using this, we find

�i − �0 = h(1 − qi)(1 − sqi+1)q−i (0� i�D),

and (70) follows.
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Solving (73), we obtain

�∗
i = h∗q−i + h∗′

qi + h∗′′
(0� i�D) (75)

for someh∗, h∗′, h∗′′ ∈ C. By Terwilliger [24, Theorem 2]we haveh∗′ = h∗qs∗, where
s∗ = q−2D−2. Eliminatingh∗′ in (75) using this, we obtain (71). Observeh∗ is nonzero by
(20). �

Corollary 15.2. With reference to Definition9.1,suppose Y is not one ofOD+1, �2D+1.
Letq, s be as in Lemma15.1.Then

qi 	= 1 (1� i�2D), (76)

sqi 	= 1 (2� i�2D). (77)

Proof. Evaluate (14) and (20) in terms ofq, s using Lemma 15.1. �

Lemma 15.3.With reference to Definition9.1,supposeY is not one ofOD+1, �2D+1. Let
q, s, h, h∗ be as in Lemma15.1.Then

�0 = h(1 + sq), (78)

�∗
0 = h∗(q2D − 1)(1 + sq)

q2D(1 − sq2)
. (79)

Proof. We apply (55) withW =W0, r = 0, t = 0, d =D, andi =D. Evaluating the result
using Theorem 11.4, Theorem 12.4, and Lemma 15.1, we obtain (78).

Recall thata∗
0 = 0, so by (41) (withr = 0, t = 0),

�∗
1�0 = �1�

∗
0.

Solving this equation for�∗
0 using (70), (71), (78), we obtain (79).�

Corollary 15.4. With reference to Definition9.1,suppose Y is not one ofOD+1, �2D+1.
Letq, s, h, h∗ be as in Lemma15.1.Then

�i = hq−i (1 + sq2i+1) (0� i�D). (80)

Proof. Routine using (70), (78). �

Theorem 15.5.With reference to Definition9.1,supposeY is not one ofOD+1, �2D+1. Let
W denote an irreducible T-module with dual endpoint t and diameter d. First assumed= 0.
Thenc0(W) = 0, a0(W) = hq−t (1 + sq2t+1), b0(W) = 0,whereq, s, h are as in Lemma
15.1.Now assumed�1.Then

c0(W)= 0, (81)

ci(W)= h(1 − qi)(1 + sq2+2d+2t−i )
qt+i (q2d−2i+1 − 1)

(1� i�d − 1), (82)
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cd(W)= h(1 − qd)(1 + sq2+d+2t )

qt+d(q − 1)
, (83)

ai(W)= 0 (0� i�d − 1), (84)

ad(W)= h(qd+1 − 1)(1 + sq1+d+2t )

qt+d(q − 1)
, (85)

b0(W)= hq−t (sq2t+1 + 1), (86)

bi(W)= h(q2d+1−i − 1)(1 + sq2t+i+1)

qt+i (q2d−2i+1 − 1)
(1� i�d − 1), (87)

bd(W)= 0, (88)

whereq, s, h are from Lemma15.1.

Proof. Routine using Theorems 11.4, 9.3, (71), (79), and (80).�

Theorem 15.6.With reference to Definition9.1,supposeY is not one ofOD+1, �2D+1. Let
W denote an irreducible T-module with endpoint r, dual endpoint t, and diameter d. Then

c∗0(W)= 0, (89)

c∗i (W)= h∗(1 − q2i )(1 − s2q2+2d+4t+2i )

qD+d+1(1 − sq2i+2t )(1 − sq1+2i+2t )
(1� i�d − 1), (90)

c∗d(W)= h∗(1 − q2d)(1 + sq2t+2d+1)

qD+d+1(1 − sq2t+2d)
, (91)

b∗
0(W)= h∗(q2d − 1)(1 + sq2t+1)

qD+d(1 − sq2+2t )
, (92)

b∗
i (W)= h∗(q2d−2i − 1)(1 − s2q2+2i+4t )

qD+d−2i (1 − sq2+2i+2t )(1 − sq1+2i+2t )
(1� i�d − 1), (93)

b∗
d(W)= 0, (94)

a∗
i (W)= �∗

r − b∗
i (W)− c∗i (W) (0� i�d), (95)

whereq, s, h∗ are from Lemma15.1.

Proof. Routine using Theorems 12.4, 9.3, (71), (79), and (80).�

Corollary 15.7. With reference to Definition9.1,suppose Y is not one ofOD+1, �2D+1.
Letq, s be as in Lemma15.1.Then

sqi 	= −1 (1� i�2D + 1).

Proof. Recall the trivial moduleW0 has dual endpointt=0 and diameterd=D. By Lemma
14.3, the intersection numbers and dual intersection numbers ofW0 in (82), (85)–(87), (90)
are nonzero. Using this information, we obtain the desired result.�
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Corollary 15.8. With reference to Definition9.1,suppose Y is not one ofOD+1, �2D+1.
Then

h= q − q2D

(q − 1)(1 + sq2D+1)
, (96)

h∗ = q2D+1(1 − sq2)(1 − sq3)

(1 − q2)(1 − s2q2D+4)
, (97)

whereq, s, h, h∗ are from Lemma15.1.We remark the denominators in(96), (97)are
nonzero by Corollaries15.2and15.7.

Proof. Concerning (96), recall the trivial moduleW0 has endpointr = 0, dual endpoint
t = 0, and diameterd =D. Also c1(W0)= 1 by Lemma 14.3 and sincec1 = 1. Evaluating
(82) using this data we find

1 = h(q − 1)(1 + sq2D+1)

q − q2D ,

and Eq. (96) follows. Eq. (97) is proven similarly.�

16. Multiplicities of the irreducible T -modules

With reference to Definition 9.1, in this section we compute the multiplicities with which
the irreducibleT -modules appear in the standard moduleV .

Definition 16.1. With reference to Definition 9.1, fix a decomposition of the standard mod-
uleV into an orthogonal direct sum of irreducibleT -modules. For any integerst, d (0� t,
d�D), we define mult(t, d) to be the number of irreducible modules in this decomposition
which have dual endpointt and diameterd. It is well-known that mult(t, d) is independent
of the decomposition (cf.[10]).

Definition 16.2. With reference to Definition 9.1, define a setΥ by

Υ := {(t, d) ∈ Z2 | 0�d�D, 1
2(D − d)� t�D − d}.

By (25), mult(t, d) = 0 for all integerst, d such that(t, d) /∈Υ . We define a partial order
� onΥ by

(t, d)�(t ′, d ′) if and only if t� t ′andt ′ + d ′ � t + d.

Example 16.3.With reference to Definition 9.1, supposeD = 7. In Fig. 1, we represent
each element(t, d) ∈ Υ by a line segment beginning in thet th column and having length
d. For any elementsa ∈ Υ , b ∈ Υ , observe thata�b if and only if the line segment
representinga extends the line segment representingb.



J.S. Caughman et al. / Discrete Mathematics 292 (2005) 17–44 41

• • • • • • • •
• • • • • • •

• • • • • •
• • • • •

• • • •
• • •

• •
•

• • • • • •
• • • • •

• • • •
• • •

• •
•

• • • •
• • •

• •
•

• •
•

0 1 2 3 4 5 6 7

Fig. 1. The setΥ whenD = 7.

Lemma 16.4.With reference to Definition9.1andDefinition16.2,fix any(t, d) ∈ Υ .Then

trace(EtL
∗dR∗dEt )=mt

t+d−1∏
h=t

b∗
hc

∗
t+d−h. (98)

Proof. By Dickie and Terwilliger[12, Lemma 4.1], we find

trace(EtA
∗
dEt+dA∗

dEt )=mtq
t
d,t+d . (99)

By Bannai and Ito[2, p. 276]and since� is Q-polynomial, we find

qtd,t+d =
t+d−1∏
h=t

b∗
h

c∗t+d−h
. (100)

We claim

Et+dA∗
dEt = 1

c∗1c∗2 · · · c∗d
R∗dEt . (101)

To see this, recall that for 0� i�D, A∗
i is a polynomial inA∗ with degreei and leading

coefficient(c∗1c∗2 · · · c∗i )−1. Combining this and (9) we findEt+dA∗iEt =0 for 0� i�d−1.
We may now argue

c∗1c∗2 · · · c∗dEt+dA∗
dEt = Et+dA∗dEt

=Et+dA∗Et+d−1A
∗ · · ·Et+1A

∗Et
=R∗dEt .

We now have (101). Taking the transpose of (101) we get

EtA
∗
dEt+d = 1

c∗1c∗2 · · · c∗d
EtL

∗d . (102)

Evaluating (99) using (100)–(102), we get the desired result.�
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Lemma 16.5.With reference to Definition9.1 and Definition16.2, fix (i, j) ∈ Υ and
(t, d) ∈ Υ . Then for any irreducible T-moduleW with dual endpoint i and diameter j,

trace(EtL
∗dR∗dEt )|W =

t−i+d−1∏
h=t−i

b∗
h(W)c

∗
h+1(W) (103)

if (i, j)�(t, d), andtrace(EtL∗dR∗dEt )|W = 0 if (i, j) /�(t, d).

Proof. Letr denote the endpoint ofW and pick any nonzerov ∈ E∗
r W . By Theorem 8.1(ii),

B := {Ehv | i�h� i + j} is a basis forW . We consider the action ofEtL∗dR∗dEt onB.
First assume(i, j)�(t, d). ThenEtL∗dR∗dEt vanishes on every element ofB exceptEtv,
and

EtL
∗dR∗dEt (Etv)=

t−i+d−1∏
h=t−i

b∗
h(W)c

∗
h+1(W)Etv

by (29), (31). Eq. (103) follows. Next assume(i, j) /�(t, d). ThenEtL∗dR∗dEt vanishes on
each element ofB, and so its trace onW is zero. �

To state our next theorem, we need a bit of notation. LetY be as in Definition 9.1 and let
Υ be as in Definition 16.2. Select(t, d) ∈ Υ . We definec∗0(t, d) := 0, b∗

d(t, d) := 0. For
d�1 we further define

c∗i (t, d) := (�2
t+i − �2

t )(�
∗
r+2 − �∗

r+1)+ (�t�t+1 − �t+i�t+i+1)(�
∗
r+1 − �∗

r )

(�t+i−1 − �t+i )(�t+i−1 − �t+i+1)

(1� i�d − 1),

c∗d(t, d) := �t+d(�∗
r+1 − �∗

r )

�t+d−1 − �t+d
,

b∗
0(t, d) := �t (�

∗
r − �∗

r+1)

�t − �t+1
,

b∗
i (t, d) := (�2

t+i − �2
t )(�

∗
r+2 − �∗

r+1)+ (�t�t+1 − �t+i�t+i−1)(�
∗
r+1 − �∗

r )

(�t+i+1 − �t+i )(�t+i+1 − �t+i−1)

(1� i�d − 1),

wherer := D− d. Observe that ifW is any irreducibleT -module with dual endpointt and
diameterd, then(t, d) ∈ Υ andc∗i (t, d)= c∗i (W), b∗

i (t, d)= b∗
i (W) (0� i�d). However,

such a module need not exist.
We now give a recurrence which will enable us to compute the multiplicities of the

irreducibleT -modules.
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Theorem 16.6.With reference to Definition9.1,fix any(t, d) ∈ Υ . Then

mt

t+d−1∏
h=t

b∗
hc

∗
t+d−h =

∑
(i,j)∈Υ
(i,j)�(t,d)

mult(i, j)
t−i+d−1∏
h=t−i

b∗
h(i, j)c

∗
h+1(i, j). (104)

Proof. SinceT is semisimple, we may decompose the standard moduleV as

V =W1 +W2 + · · · +Ws (orthogonal direct sum),

whereW1,W2, . . . ,Ws are irreducibleT -modules. It follows that

trace(EtL
∗dR∗dEt )=

s∑
i=1

trace(EtL
∗dR∗dEt )|Wi

. (105)

Evaluating (105) using (98), (103) we obtain (104).�

Remark 16.7. With reference to Definition 9.1, we can use Theorem 16.6 to recursively
compute the multiplicities{mult(t, d) | (t, d) ∈ Υ }. Indeed, pick any(t, d) ∈ Υ . Then
(104) gives a linear equation in the variables{mult(i, j) | (i, j) ∈ Υ, (i, j)�(t, d)}. In this
equation, the coefficient of mult(t, d) is

d−1∏
h=0

b∗
h(t, d)c

∗
h+1(t, d). (106)

Suppose the coefficient (106) is nonzero. Then we can divide both sides of Eq. (104) by it,
and obtain mult(t, d) in terms of{mult(i, j) | (i, j) ≺ (t, d)}. Suppose the coefficient (106)
equals 0. By Corollary 13.2(ii), there is no module with dual endpointt and diameterd, so
mult(t, d)= 0.

We now illustrate Theorem 16.6 with an example.

Example 16.8.With reference to Definition 9.1, supposeY is not one ofOD+1, �2D+1.
For all (t, d) ∈ Υ such thatd�D − 3, the scalar mult(t, d) is given below.

(i) mult(0,D)= 1.

(ii) mult(1,D − 1)= (q2D−1)(1+sq2)

(1−q)(1+sq2D+1)
.

(iii) mult (1,D − 2)= (q2D−q2)(1+sq)(1+sq2)(sq2D+2−1)
(q2−1)(s2q2D+4−1)(1+sq2D+1)

.

(iv) mult(2,D − 2)= (q2D−1)(q2D−q2)(1+sq)(1+sq4)(s2q2D+3−1)
q(q+1)(q−1)2(s2q2D+4−1)(1+sq2D)(1+sq2D+1)

.

(v) mult(2,D − 3)= (q2D−1)(q2D−q4)(1+sq)(1+sq2)(1+sq4)(1−sq2D+2)

q(q−1)(q2−1)(1+sq2D+1)(sqD+3−1)(q+sq2D)(1+sqD+3)
.

(vi) mult(3,D − 3)= (q2D−1)(q2D−q2)(q2D−q4)(1+sq)(1+sq2)(1+sq6)(1−s2q2D+3)

q2(q−1)(q2−1)(q3−1)(1+sqD+3)(sqD+3−1)(q+sq2D)(1+sq2D)(1+sq2D+1)
.

The scalarsq, s are from Lemma 15.1. We remark the denominators in (i)–(vi) are nonzero
by Corollaries 15.2 and 15.7.
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Proof. Solve (104) recursively for the multiplicities, as outlined in Remark 16.7. Evaluate
the results using Lemmas 15.1, 15.3 and Corollaries 15.4, 15.8.�
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