664 research outputs found

    Failure envelopes of pile groups under inclined and eccentric load

    Get PDF
    A novel numerical procedure for defining failure envelopes of pile groups under inclined and eccentric load is proposed. The starting point is a closed-form exact solution for interaction diagram of pile groups under combined axial-moment loading recently published in the literature. Failure envelopes in the generalised force space are then derived as an extension of this solution by means of an incremental algorithm. It is shown that the axial load at foundation level has always a beneficial effect on the lateral capacity of the pile group, even if this favourable effect is often neglected in practice. On the contrary, the amount of interaction between the horizontal and moment components of the resultant action at failure is usually very small, with the exception of piles groups with end-bearing piles. Some example applications of the proposed method are provided and a simple, yet reliable procedure for ultimate limit-state analysis of pile groups subjected to inclined and eccentric loads is suggested

    Surface doping in T6/ PDI-8CN2 Heterostructures investigated by transport and photoemission measurements

    Full text link
    In this paper, we discuss the surface doping in sexithiophene (T6) organic field-effect transistors by PDI-8CN2. We show that an accumulation heterojunction is formed at the interface between the organic semiconductors and that the consequent band bending in T6 caused by PDI-8CN2 deposition can be addressed as the cause of the surface doping in T6 transistors. Several evidences of this phenomenon have been furnished both by electrical transport and photoemission measurements, namely the increase in the conductivity, the shift of the threshold voltage and the shift of the T6 HOMO peak towards higher binding energies.Comment: 5 pages, 5 figure

    Failure envelopes of pile groups under combined axial-moment loading: Theoretical background and experimental evidence

    Get PDF
    The problem of failure envelopes of pile groups subjected to vertical and eccentric load is investigated both theoretically and experimentally. A critical review of literature works on failure envelopes for pile groups under combined axial-moment loading is first provided. Emphasis is placed on a recent, exact solution derived from theorems of limit analysis by idealizing piles as uniaxial rigid-perfectly plastic elements. The application of the relevant equations over a practical range of problems needs only the axial capacities in compression and uplift of the isolated piles. An intense program of centrifuge experiments carried out along with different load paths on annular shaped pile groups aimed at validating the equations pertinent to the above solution is presented and discussed. The endpoints of the load paths followed in the centrifuge lie approximately above the analytical failure envelope, giving confidence that the reference equations can be reliably adopted to assess the capacity of a pile group under combined axial-moment loading. Finally, the kinematics of the collapse mechanism observed experimentally is compared to that determined from the application of the reference theory

    Failure envelopes of pile groups under combined axial-moment loading: Theoretical background and experimental evidence

    Get PDF
    Abstract The problem of failure envelopes of pile groups subjected to vertical and eccentric load is investigated both theoretically and experimentally. A critical review of literature works on failure envelopes for pile groups under combined axial-moment loading is first provided. Emphasis is placed on a recent, exact solution derived from theorems of limit analysis by idealizing piles as uniaxial rigid-perfectly plastic elements. The application of the relevant equations over a practical range of problems needs only the axial capacities in compression and uplift of the isolated piles. An intense program of centrifuge experiments carried out along with different load paths on annular shaped pile groups aimed at validating the equations pertinent to the above solution is presented and discussed. The endpoints of the load paths followed in the centrifuge lie approximately above the analytical failure envelope, giving confidence that the reference equations can be reliably adopted to assess the capacity of a pile group under combined axial-moment loading. Finally, the kinematics of the collapse mechanism observed experimentally is compared to that determined from the application of the reference theory

    ALDH3A1 overexpression in melanoma and lung tumors drives cancer stem cell expansion, impairing immune surveillance through enhanced PD-L1 output

    Get PDF
    Melanoma and non-small-cell lung carcinoma (NSCLC) cell lines are characterized by an intrinsic population of cancer stem-like cells (CSC), and high expression of detoxifying isozymes, the aldehyde dehydrogenases (ALDHs), regulating the redox state. In this study, using melanoma and NSCLC cells, we demonstrate that ALDH3A1 isozyme overexpression and activity is closely associated with a highly aggressive mesenchymal and immunosuppressive profile. The contribution of ALDH3A1 to the stemness and immunogenic status of melanoma and NSCLC cells was evaluated by their ability to grow in 3D forming tumorspheres, and by the expression of markers for stemness, epithelial to mesenchymal transition (EMT), and inflammation. Furthermore, in specimens from melanoma and NSCLC patients, we investigated the expression of ALDH3A1, PD-L1, and cyclooxygenase-2 (COX-2) by immunohistochemistry. We show that cells engineered to overexpress the ALDH3A1 enzyme enriched the CSCs population in melanoma and NSCLC cultures, changing their transcriptome. In fact, we found increased expression of EMT markers, such as vimentin, fibronectin, and Zeb1, and of pro-inflammatory and immunosuppressive mediators, such as NFkB, prostaglandin E2, and interleukin-6 and-13. ALDH3A1 overexpression enhanced PD-L1 output in tumor cells and resulted in reduced proliferation of peripheral blood mononuclear cells when co-cultured with tumor cells. Furthermore, in tumor specimens from melanoma and NSCLC patients, ALDH3A1 expression was invariably correlated with PD-L1 and the pro-inflammatory marker COX-2. These findings link ALDH3A1 expression to tumor stemness, EMT and PD-L1 expression, and suggest that aldehyde detoxification is a redox metabolic pathway that tunes the immunological output of tumors

    Examination of direct-photon and pion production in proton-nucleon collisions

    Full text link
    We present a study of inclusive direct-photon and pion production in hadronic interactions, focusing on a comparison of the ratio of gamma/pi0 yields with expectations from next-to-leading order perturbative QCD (NLO pQCD). We also examine the impact of a phenomenological model involving k_T smearing (which approximates effects of additional soft-gluon emission) on absolute predictions for photon and pion production and their ratio.Comment: 20 pages, 12 figures. Minor changes in wording and in figure

    Interfacing aptamers, nanoparticles and graphene in a hierarchical structure for highly selective detection of biomolecules in OECT devices

    Get PDF
    In several biomedical applications, the detection of biomarkers demands high sensitivity, selectivity and easy-to-use devices. Organic electrochemical transistors (OECTs) represent a promising class of devices combining a minimal invasiveness and good signal transduction. However, OECTs lack of intrinsic selectivity that should be implemented by specific approaches to make them well suitable for biomedical applications. Here, we report on a biosensor in which selectivity and a high sensitivity are achieved by interfacing, in an OECT architecture, a novel gate electrode based on aptamers, Au nanoparticles and graphene hierarchically organized to optimize the final response. The fabricated biosensor performs state of the art limit of detection monitoring biomolecules, such as thrombin-with a limit of detection in the picomolar range (≤ 5 pM) and a very good selectivity even in presence of supraphysiological concentrations of Bovine Serum Albumin (BSA-1mM). These accomplishments are the final result of the gate hierarchic structure that reduces sterich indrance that could contrast the recognition events and minimizes false positive, because of the low affinity of graphene towards the physiological environment. Since our approach can be easily applied to a large variety of different biomarkers, we envisage a relevant potential for a large series of different biomedical applications

    Fludarabine as a cost-effective adjuvant to enhance engraftment of human normal and malignant hematopoiesis in immunodeficient mice

    Get PDF
    There is still an unmet need for xenotransplantation models that efficiently recapitulate normal and malignant human hematopoiesis. Indeed, there are a number of strategies to generate humanized mice and specific protocols, including techniques to optimize the cytokine environment of recipient mice and drug alternatives or complementary to the standard conditioning regimens, that can be significantly modulated. Unfortunately, the high costs related to the use of sophisticated mouse models may limit the application of these models to studies that require an extensive experimental design. Here, using an affordable and convenient method, we demonstrate that the administration of fludarabine (FludaraTM) promotes the extensive and rapid engraftment of human normal hematopoiesis in immunodeficient mice. Quantification of human CD45+ cells in bone marrow revealed approximately a 102-fold increase in mice conditioned with irradiation plus fludarabine. Engrafted cells in the bone marrow included hematopoietic stem cells, as well as myeloid and lymphoid cells. Moreover, this model proved to be sufficient for robust reconstitution of malignant myeloid hematopoiesis, permitting primary acute myeloid leukemia cells to engraft as early as 8 weeks after the transplant. Overall, these results present a novel and affordable model for engraftment of human normal and malignant hematopoiesis in immunodeficient mice
    • …
    corecore