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A novel numerical procedure for defining failure envelopes of pile groups under inclined and eccentric
load is proposed. The starting point is a closed-form exact solution for interaction diagram of pile
groups under combined axial-moment loading recently published in the literature. Failure envelopes in
the generalised force space are then derived as an extension of this solution by means of an
incremental algorithm. It is shown that the axial load at foundation level has always a beneficial effect
on the lateral capacity of the pile group, even if this favourable effect is often neglected in practice. On
the contrary, the amount of interaction between the horizontal and moment components of the
resultant action at failure is usually very small, with the exception of piles groups with end-bearing
piles. Some example applications of the proposed method are provided and a simple, yet reliable
procedure for ultimate limit-state analysis of pile groups subjected to inclined and eccentric loads is
suggested.
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NOTATION
B characteristic dimension of the foundation
H horizontal component of the resultant action
Hu horizontal component of the resultant action at failure
M moment component of the resultant action
Mu moment component of the pile group at failure
My yielding moment of pile cross-section
Ni axial load on pile i

Nmax axial load corresponding to the maximum value of My
Nu axial capacity of the isolated pile in compression
p number of piles
Q vertical component of the resultant action
Qa axial capacity in compression or uplift of the isolated pile
Qhi lateral capacity of the isolated under axial load Ni

Qu axial component of the resultant action at failure
R radius of the circle for annular-shaped pile groups
Su axial capacity of the isolated pile in uplift
s piles spacing
su undrained shear strength
η efficiency of pile groups under horizontal loads
ξj abscissa of j-th pile

INTRODUCTION
The most widespread design approach in geotechnical
engineering for pile groups under eccentric and inclined
loads is based on independent calculation of the safety level
against vertical and horizontal modes of failure. On the
contrary, the large demand of tall, slender structures usually
subjected to large, multi-component loads has led to design
methodologies based on the concept of ‘failure envelope’
where the ‘coupling’ effect among the components of the

resultant action is explicitly taken into account. This concept
has been applied extensively over the last decades to many
foundation types, including shallow foundations (Nova &
Montrasio, 1991; Butterfield & Gottardi, 1994; Taiebat &
Carter, 2000; Gourvenec & Randolph, 2003; Gourvenec,
2007; Vulpe et al., 2014), skirted and caisson foundations
(Bransby & Randolph, 1998; Gourvenec & Barnett, 2011)
and spudcan foundations (Martin & Houlsby, 2001; Cassidy
et al., 2004). The advantage of this approach over classical
superposition (Brinch Hansen, 1970) is manifold as widely
discussed in Nova & Montrasio (1991) and Gottardi &
Butterfield (1993). Failure envelopes can be used to assess
the capacity and proximity to failure surface of a foundation
under combined loading or employed as ingredients for
plasticity-based macro-element models. Their application to
engineering foundation problems is also recommended by
ISO (2016).

The problem of the failure locus of a pile group in the
generalised force space (Q,H,M/B), with Q,H andM being
the vertical, lateral and moment components of the resultant
action and B the characteristic dimension of the foundation,
has been traditionally investigated on an experimental
basis. Such works include small-scale tests on groups of
aluminium piles embedded in both sand (Kishida &
Meyerhof, 1965; Meyerhof & Ranjan, 1973; Meyerhof
et al., 1983) and saturated clay (Saffery & Tate, 1961;
Meyerhof, 1981; Meyerhof & Yalcin, 1984). As an outcome
of these tests, semi-empirical interaction relationships in
both the (Q, M ) and (Q, H ) planes are available (Meyerhof
& Ranjan, 1972; Meyerhof et al., 1983; Meyerhof & Yalcin,
1984). The combination of eccentric and inclined loads is
handled in terms of a reduction factor of the vertical
capacity under purely axial load, rather than through a
generalised equation in the force space. Semi-empirical,
approximate expressions of this factor are available in both
sand (Meyerhof et al., 1983) and clay (Meyerhof & Yalcin,
1984). However, the yielding moments of the aluminium
piles are so high that the collapse mechanism under lateral
load does not follow the long pile mode (Broms, 1964a,
1964b), which is instead the most common mode of
failure. Hence, their applicability in practice is at least
questionable.
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A novel exact solution for failure envelopes of pile groups
in the general case of unevenly distributed, dissimilar piles
under combined axial-moment loading has been determined
by Di Laora et al. (2019) throughout an application of the
theorems of limit analysis. The basic hypotheses of this
approach are: (a) piles idealised as uniaxial rigid–perfectly
plastic elements; (b) piles’ connecting cap idealised as a
rigid body; (c) connections of the piles to the cap modelled as
hinges. The only ingredients needed for this calculation are
the axial capacity in compression, Nu, and in uplift, −Su, of
the piles belonging to the group. As an extension of this
study, the focus is set herein on the failure envelopes of pile
groups within planes parallel to (Q, H ) and (H, M ). Since
the horizontal capacity of each pile depends on the
properties of its cross-sectional area and the amount of
applied axial load, which in turn must lie in between (−Su,
Nu). Some example applications of this approach
are provided. Finally, a simple criterion for ultimate limit-
state analysis of pile groups under generalised loads is
suggested.

MATHEMATICAL FRAMEWORK
The procedure for determining the failure envelopes in
planes parallel to (Q, H ) or (H, M ) has been developed for
the general case of unevenly distributed, dissimilar piles.
However, for the convenience of the reader, the conceptual
flow which the mathematical framework is based on is
herein described with regard to the case of unevenly
distributed, identical piles. The starting point is the inter-
action diagram in the (Q,M ) plane. In this respect, reference
is made to the exact solution by Di Laora et al. (2019),
a polygon with 2p vertexes in the (Q, M ) plane, whose
coordinates are:

Qui ¼ i � 1ð ÞNu � p� i þ 1ð ÞSu

Mui ¼ �Nu
Pi�1

j¼1 ξ j þ Su
Pp

j¼i ξ j

(
i ¼ 1; . . . ; p ð1Þ

Quk ¼ � k � 1ð ÞSu þ p� k þ 1ð ÞNu

Muk ¼ Su
Pk�1

j¼1 ξ j �Nu
Pp

j¼k ξ j

(
k ¼ 1; . . . ; p ð2Þ

where p is the number of piles, Qu and Mu are the ultimate
axial load andmoment of the pile group and ξj is the abscissa
of j-th pile along with the direction perpendicular to the
resultant moment vector. Figure 1 shows the interaction
diagram of a row of four equally spaced, identical piles with
Su/Nu = 3/4, as an example. As already discussed by
Di Laora et al. (2019), the vertexes of this polygon

correspond to failure modes where the cap displaces by
rotation about a point in between two adjacent piles, while
the conjunction lines represent failure modes where the
cap displaces by rotation about the head of a pile. According
to this last failure mode, all piles achieve their axial capacity
in compression or uplift, with the exception of the pile
corresponding to the centre of rotation. The problem of the
failure envelopes within planes parallel to (Q, H ) and
(H, M ) is solved numerically, through an incremental
procedure which accounts for the relationship between the
axial load atop the pile, N, and the yielding moment of its
cross-sectional area,My. To this aim, the interval (−pSu, pNu)
is first partitioned so as to identify a grid of (Q,M ) points, as
shown in Fig. 1. An incremental algorithm is then used to
calculate the axial load distributions on piles corresponding
to the grid points, according to the following steps:

(1) The axial load distribution is first supposed to be linear
so as to satisfy only equilibrium conditions:

N i ¼ Q
p
þ MPn

i¼1 ξ
2
i

ξ i i ¼ 1; . . . ; p ð3Þ

(2) The following ratios are then calculated for all the
piles:

qi ¼ Ni �Qa

Qa
ð4Þ

where Qa is the axial capacity of the i-th pile in compression
or uplift – that is, Qa =Nu [–Su] if Ni < 0 [>0]. Negative
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Fig. 1. Interaction diagram in the (Q, M ) plane for a row of four
identical, equally spaced piles
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Fig. 2. Plan view and cross-section of a wind turbine foundation
in southern Italy
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values of the above ratio indicate that piles have not achieved
their axial capacity. In this case the linear assumption does
not violate the failure criterion and the procedure terminates.
By contrast, the occurrence of positive values of q suggest
that one or more piles have attained failure. In this case, the
axial load acting on the pile with the highest q is set equal to
Nu or −Su, depending on the sign of Ni, and the proportion
of the external moment corresponding to the mobilisation of
Qa (M1) is calculated.
(3) The residual value of the external moment, M–M1, is

applied on the pile group obtained by subtracting the yielded
pile from the original layout, and the axial load distribution
on piles is thus updated by summing the linear distribution
corresponding to (Q, M1) to that coming from the residual
moment.
(4) Once again, the axial load distribution should not

violate the failure criterion defined for the piles. Should this
not be the case, the previous steps are repeated until the
residual moment is zero.
Once the Ni values have been determined, the yielding

momentsMyi at piles’ heads are computed from the equation
of the (N,My) interaction diagram of the cross-sectional area
of the pile. The lateral capacity of the i-th pile, Qhi, is then
calculated according to the well-known theory by Broms
(1964a, 1964b). The lateral capacity of the pile group for any
(Q, M ) pair of the grid is finally evaluated as

Hu ¼ η
Xn
1

Qhi ð5Þ

where η is the efficiency of the pile group. For long
and intermediate failure modes, the contribution of the
yielding moments Myi to the lateral capacity of the group is
therefore explicitly taken into account. Notably, the piles’
connections to the cap are modelled as rigid–plastic fixities
in this case.

Another noteworthy point is that inclined loads on piles
evaluated with the proposed procedure do not violate the
failure criterion of the isolated pile in the (Q, H ) plane.
Hence, in the realm of the limit analysis theorems, the lateral
capacity of the group calculated from equation (5) is a
lower-bound solution. The above procedure has been
implemented in a Matlab code. Some example applications
are provided in the following.

APPLICATION TO CASE STUDIES
A wind farm in Southern Italy
The case study of a wind farm in Southern Italy is first
examined. Each wind turbine is founded on a circular raft
enhanced with 16 cast-in situ bored piles 22 m long and
0·8 m in diameter embedded in over-consolidated clay and
arranged along with a circumference with radiusR=7·05 m,
as shown in Fig. 2. This case study was already examined by
Di Laora et al. (2019) to highlight the advantages of the
theoretical solution for failure envelops in (Q, M ) plane
based on limit analysis theorems. As discussed by the
authors, the application of this innovative approach would
have allowed to reduce the pile length from 22 to 14 m. This
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Fig. 3. Interaction diagrams in case of floating piles
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last layout (case a) is considered for the purpose of this study.
Figure 3 illustrates the failure envelopes of the pile group in
the (Q, M/R) plane evaluated through equations (1) and (2)
and in planes parallel to (Q, H ) and (Q, M/R) determined

through the proposed procedure. Yielding moments within
piles were evaluated from the axial load distribution on piles
using the simplified expression of Di Laora et al. (2020), in
which the longitudinal rebar arrangement is idealised with a
thin steel ring having an equivalent area of 32 cm2 and a
radius of 33 cm. The relevant amount of interaction between
the ultimate vertical and horizontal components is due to the
intense relationship between the axial load and the yielding
moment of the cross-sectional area of the pile (Fig. 4). The
failure surfaces in the (Q, H ) plane for different values of M
fall within a very narrow band, suggesting that the lateral
capacity is mainly affected by the amount of axial load.
The same conclusion can be easily drawn from the failure
envelopes in the (H, M/R) plane. The components of the
resultant action under extreme wind conditions are also
plotted in Fig. 3 for comparison.

The picture may be different in case of end-bearing piles.
To shed light on this situation, the stiff layer in Fig. 2 is
replaced by a soft rock (case b), so as to ideally increase the
unit resistance at the pile base. In this case, 12 piles with a
diameter of 0·6 m, a length of 14 m and a longitudinal rebar
with equivalent area of 32 cm2 and a radius of 23 cm are
sufficient to withstand the moment loading induced by
extreme wind conditions. The interaction diagrams of this
foundation are illustrated in Fig. 5. Contrarily to case (a), the
failure envelopes in the (Q, H ) plane are no longer confined
in a narrow band as the influence of the moment component
on the lateral capacity of the foundation under the dead load
of the tower is not negligible. This is due to the fact that the
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(N,My) relationship in the wider reference interval (−Su,Nu)
is markedly non-linear (see Fig. 6).

Small-scale models for centrifuge testing
The attention is placed on a subset of model foundations
recently tested in the 10 m diameter Turner Beam Centrifuge
of the University of Cambridge by de Sanctis et al. (2021)
with the aim of validating experimentally the theoretical

solution by Di Laora et al. (2019). Centrifuge tests were
carried out at 50g on annular-shaped pile groups (R=3 m)
consisting of eight aluminium piles hinged at the top and
isolated piles embedded in a kaolin clay layer (Fig. 7). The
model piles were 50 mm thick close-ended hollow cylinders,
with an outer diameter of 500 mm and an embedded length
of 12 m (at prototype scale). Also shown in Fig. 7 is the
undrained shear strength, su, profile obtained from a cone
penetration test (CPT) carried out with a miniature CPT
device after the swing down stage. For the purpose of this
example application, the curve labelled CPT in Fig. 7 can be
replaced by a constant profile with su = 13·7 kPa. Loading
tests on two isolated piles allowed to evaluate the axial
capacities and, hence, the interaction diagram in the
(Q, M/R) plane. The failure envelopes in planes parallel to
(Q, H ) and (H, M/R) calculated with the procedure
proposed herein are illustrated in Fig. 8. Yielding moments
Myi are calculated from axial loads using the closed-form
solution of Rotter & Sadowski (2017) for tubes with small
thickness. Notably, piles are free-to-rotate and fail according
to the short mode (Broms, 1964a) – that is, without the
occurrence of plastic hinges. In this situation, the lateral
capacity of piles belonging to the group is unaffected from
the yielding moments and, hence, from the distribution of
axial loads on piles. As a consequence, there is no
‘interaction’ at failure between the horizontal load and the
other two components of the resultant action on the
foundation.

IMPLICATIONS IN DESIGN
Figure 9 illustrates the failure envelope for a pile group
(case a) in the generalised force space. As an alternative to
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the construction of this spatial domain, the following
simplified procedure can be adopted. The failure envelopes
in the (Q, M ) and (Q, H ) planes are first evaluated.
The interaction diagram for M= 0 can be conveniently
approximated through the unique parabolic equation:

Hu ¼ aQ2
u þ bQu þ c

a ¼ Qh1 �Qh2

n S2
u �N2

u þ 2Nmax Su þNuð Þ� �
b ¼ �2anNmax

c ¼ n
Qh2S2

u �Qh1N2
u þ 2Nmax Qh2Su þQh1Nuð Þ

S2
u �N2

u þ 2Nmax Su þNuð Þ

ð6Þ

where (Qh1, Qh2) are the lateral capacities of the isolated
pile evaluated at (−Su, Nu), while Nmax is the axial load
corresponding to the maximum value of My. As shown in
Figs 3 and 5, equation (6) matches satisfactorily the
interaction diagram determined by the numerical approach
for both floating and end-bearing piles.
The above envelopes can be conveniently represented into

a unique tripartite plot with the axial load variable on the
x-axis. In many practical situations, the foundation can be
considered safe enough against failure when the points of
coordinates (Q, H ) and (Q, M ) fall inside their respective
interaction diagrams. Of course, care must be taken in case
of end-bearing piles when the (Q, H ) pair falls in proximity

of the parabolic envelope, provided that the amount of
interaction between the lateral load and moment capacity
might not be negligible in this case.

CONCLUSIONS
A simple approach for determining the failure locus of pile
groups in the generalised force space is presented and
discussed. The starting point is a recent exact solution for
failure envelopes under combined axial-moment loading
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Fig. 9. Failure envelope in the generalised force space
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based on theorems of limit analysis. As an extension of this
study, failure envelopes in the space of loads are calculated
through an incremental procedure in which the dependence
of the lateral capacity of the foundation from the yielding
moments of the cross-sectional area of piles is explicitly
taken into account.
Some example applications are provided as the basis for a

discussion about the mechanisms of interaction at failure
between the components of the resultant action. It is shown
that the axial load at foundation level, as that due to the dead
load of the structure, always has a beneficial effect on the
lateral capacity of the foundation. On the contrary, the
amount of interaction at failure between the horizontal
and moment components is usually very small. Groups of
end-bearing piles might be an exception to this last
conclusion.
A simple approach based on hand calculation of two

analytical domains in a tripartite plot is also proposed for
practical estimation of the safety conditions of a pile group
subjected to inclined and eccentric load.
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