3,730 research outputs found

    The Evolution of Dust in the Early Universe with Applications to the Galaxy SDSS J1148+5251

    Full text link
    Dusty hyperluminous galaxies in the early universe provide unique environments for studying the role of massive stars in the formation and destruction of dust. At redshifts above ~ 6, when the universe was less than ~ 1 Gyr old, dust could have only condensed in the explosive ejecta of Type II supernovae (SNe), since most of the progenitors of the AGB stars, the major alternative source of interstellar dust, did not have time to evolve off the main sequence since the onset of star formation. In this paper we present analytical models for the evolution of the gas, dust, and metals in high redshift galaxies, with a special application to SDSS J1148+5251, a hyperluminous quasar at z = 6.4. We find that an average supernova must condense at least 1 Msun of dust to account for the observed dust mass in this quasar. Observationally, it is in excess of the largest dust yield of ~0.02 Msun found thus far in the ejecta of any SN. If future observations find this to be a typical supernova dust yield, then additional processes, such as accretion onto preexisting grains, or condensation around the AGN will need to be invoked to account for the large amount of dust in this and similar objects. The galaxy's star formation history is still uncertain, and current observations of the gas, metal, and dust contents of J1148 can be reproduced by either an intensive and short burst of star formation (~ 1000 Msun/yr) with a duration of ~ 100 Myr, or a much lower star formation rate (~ 100 Msun/yr) occurring over the lifetime of the galaxy.Comment: 35 pages, 11 figures, accepted for publication in the Astrophysical Journa

    Mergers of Black Hole -- Neutron Star binaries. I. Methods and First Results

    Get PDF
    We use a 3-D relativistic SPH (Smoothed Particle Hydrodynamics) code to study mergers of black hole -- neutron star (BH--NS) binary systems with low mass ratios, adopting MNS/MBH≃0.1M_{NS}/M_{BH} \simeq 0.1 as a representative case. The outcome of such mergers depends sensitively on both the magnitude of the BH spin and its obliquity (i.e., the inclination of the binary orbit with respect to the equatorial plane of the BH). In particular, only systems with sufficiently high BH spin parameter aa and sufficiently low orbital inclinations allow any NS matter to escape or to form a long-lived disk outside the BH horizon after disruption. Mergers of binaries with orbital inclinations above ∼60o\sim60^o lead to complete prompt accretion of the entire NS by the BH, even for the case of an extreme Kerr BH. We find that the formation of a significant disk or torus of NS material around the BH always requires a near-maximal BH spin and a low initial inclination of the NS orbit just prior to merger.Comment: to appear in ApJ, 54 pages, 19 figure

    Dynamical Interactions and the Black Hole Merger Rate of the Universe

    Get PDF
    Binary black holes can form efficiently in dense young stellar clusters, such as the progenitors of globular clusters, via a combination of gravitational segregation and cluster evaporation. We use simple analytic arguments supported by detailed N-body simulations to determine how frequently black holes born in a single stellar cluster should form binaries, be ejected from the cluster, and merge through the emission of gravitational radiation. We then convolve this ``transfer function'' relating cluster formation to black hole mergers with (i) the distribution of observed cluster masses and (ii) the star formation history of the universe, assuming that a significant fraction gcl of star formation occurs in clusters and that a significant fraction gcand of clusters undergo this segregation and evaporation process. We predict future ground--based gravitational wave (GW) detectors could observe ~500 (gcl/0.5) (gcand/0.1) double black hole mergers per year, and the presently operating LIGO interferometer would have a chance (50%) at detecting a merger during its first full year of science data. More realistically, advanced LIGO and similar next-generation gravitational wave observatories provide unique opportunities to constrain otherwise inaccessible properties of clusters formed in the early universe.Comment: 4 pages, 2 figures. To appear in PRD Rapid Communication

    Protein glycosylation as a diagnostic and prognostic marker of chronic inflammatory gastrointestinal and liver diseases

    Get PDF
    Glycans are sequences of carbohydrates that are added to proteins or lipids to modulate their structure and function. Glycans modify proteins required for regulation of immune cells, and alterations have been associated with inflammatory conditions. For example, specific glycans regulate T-cell activation, structures, and functions of immunoglobulins; interactions between microbes and immune and epithelial cells; and malignant transformation in the intestine and liver. We review the effects of protein glycosylation in regulation of gastrointestinal and liver functions, and how alterations in glycosylation serve as diagnostic or prognostic factors, or as targets for therapy

    Rapid formation of exponential disks and bulges at high redshift from the dynamical evolution of clump cluster and chain galaxies

    Full text link
    Many galaxies at high redshift have peculiar morphologies dominated by 10^8-10^9 Mo kpc-sized clumps. Using numerical simulations, we show that these "clump clusters" can result from fragmentation in gravitationally unstable primordial disks. They appear as "chain galaxies" when observed edge-on. In less than 1 Gyr, clump formation, migration, disruption, and interaction with the disk cause these systems to evolve from initially uniform disks into regular spiral galaxies with an exponential or double-exponential disk profile and a central bulge. The inner exponential is the initial disk size and the outer exponential is from material flung out by spiral arms and clump torques. A nuclear black hole may form at the same time as the bulge from smaller black holes that grow inside the dense cores of each clump. The properties and lifetimes of the clumps in our models are consistent with observations of the clumps in high redshift galaxies, and the stellar motions in our models are consistent with the observed velocity dispersions and lack of organized rotation in chain galaxies. We suggest that violently unstable disks are the first step in spiral galaxy formation. The associated starburst activity gives a short timescale for the initial stellar disk to form.Comment: ApJ Accepted, 13 pages, 9 figure

    Predicting bioavailability change of complex chemical mixtures in contaminated soils using visible and near-infrared spectroscopy and random forest regression

    Get PDF
    A number of studies have shown that visible and near infrared spectroscopy (VIS-NIRS) offers a rapid on-site measurement tool for the determination of total contaminant concentration of petroleum hydrocarbons compounds (PHC), heavy metals and metalloids (HM) in soil. However none of them have yet assessed the feasibility of using VIS-NIRS coupled to random forest (RF) regression for determining both the total and bioavailable concentrations of complex chemical mixtures. Results showed that the predictions of the total concentrations of polycyclic aromatic hydrocarbons (PAH), PHC, and alkanes (ALK) were very good, good and fair, and in contrast, the predictions of the bioavailable concentrations of the PAH and PHC were only fair, and poor for ALK. A large number of trace elements, mainly lead (Pb), aluminium (Al), nickel (Ni), chromium (Cr), cadmium (Cd), iron (Fe) and zinc (Zn) were predicted with very good or good accuracy. The prediction results of the total HMs were also better than those of the bioavailable concentrations. Overall, the results demonstrate that VIS-NIR DRS coupled to RF is a promising rapid measurement tool to inform both the distribution and bioavailability of complex chemical mixtures without the need of collecting soil samples and lengthy extraction for further analysis
    • …
    corecore