Binary black holes can form efficiently in dense young stellar clusters, such
as the progenitors of globular clusters, via a combination of gravitational
segregation and cluster evaporation. We use simple analytic arguments supported
by detailed N-body simulations to determine how frequently black holes born in
a single stellar cluster should form binaries, be ejected from the cluster, and
merge through the emission of gravitational radiation. We then convolve this
``transfer function'' relating cluster formation to black hole mergers with (i)
the distribution of observed cluster masses and (ii) the star formation history
of the universe, assuming that a significant fraction gcl of star formation
occurs in clusters and that a significant fraction gcand of clusters undergo
this segregation and evaporation process. We predict future ground--based
gravitational wave (GW) detectors could observe ~500 (gcl/0.5) (gcand/0.1)
double black hole mergers per year, and the presently operating LIGO
interferometer would have a chance (50%) at detecting a merger during its first
full year of science data. More realistically, advanced LIGO and similar
next-generation gravitational wave observatories provide unique opportunities
to constrain otherwise inaccessible properties of clusters formed in the early
universe.Comment: 4 pages, 2 figures. To appear in PRD Rapid Communication