20,431 research outputs found

    Long titanium heat pipes for high-temperature space radiators

    Get PDF
    Titanium heat pipes are being developed to provide light weight, reliable heat rejection devices as an alternate radiator design for the Space Reactor Power System (SP-100). The radiator design includes 360 heat pipes, each of which is 5.2 m long and dissipates 3 kW of power at 775 K. The radiator heat pipes use potassium as the working fluid, have two screen arteries for fluid return, a roughened surface distributive wicking system, and a D shaped cross section container configuration. A prototype titanium heat pipe, 5.5 m long, was fabricated and tested in space simulating conditions. Results from startup and isothermal operation tests are presented. These results are also compared to theoretical performance predictions that were used to design the heat pipe initially

    Power law tails of time correlations in a mesoscopic fluid model

    Get PDF
    In a quenched mesoscopic fluid, modelling transport processes at high densities, we perform computer simulations of the single particle energy autocorrelation function C_e(t), which is essentially a return probability. This is done to test the predictions for power law tails, obtained from mode coupling theory. We study both off and on-lattice systems in one- and two-dimensions. The predicted long time tail ~ t^{-d/2} is in excellent agreement with the results of computer simulations. We also account for finite size effects, such that smaller systems are fully covered by the present theory as well.Comment: 11 pages, 12 figure

    Coherence freeze in an optical lattice investigated via pump-probe spectroscopy

    Full text link
    Motivated by our observation of fast echo decay and a surprising coherence freeze, we have developed a pump-probe spectroscopy technique for vibrational states of ultracold 85^{85}Rb atoms in an optical lattice to gain information about the memory dynamics of the system. We use pump-probe spectroscopy to monitor the time-dependent changes of frequencies experienced by atoms and to characterize the probability distribution of these frequency trajectories. We show that the inferred distribution, unlike a naive microscopic model of the lattice, correctly predicts the main features of the observed echo decay.Comment: 4 pages, 5 figure

    Correlation and response in a driven dissipative model

    Full text link
    We consider a simple dissipative system with spatial structure in contact with a heat bath. The system always exhibits correlations except in the cases of zero and maximal dissipation. We explicitly calculate the correlation function and the nonlocal response function of the system and show that they have the same spatial dependence. Finally, we examine heat transfer in the model, which agrees qualitatively with simulations of vibrated granular gases

    Microscopic approach to pion-nucleus dynamics

    Get PDF
    Elastic scattering of pions from finite nuclei is investigated utilizing a contemporary, momentum--space first--order optical potential combined with microscopic estimates of second--order corrections. The calculation of the first--order potential includes:\ \ (1)~full Fermi--averaging integration including both the delta propagation and the intrinsic nonlocalities in the π\pi-NN amplitude, (2)~fully covariant kinematics, (3)~use of invariant amplitudes which do not contain kinematic singularities, and (4)~a finite--range off--shell pion--nucleon model which contains the nucleon pole term. The effect of the delta--nucleus interaction is included via the mean spectral--energy approximation. It is demonstrated that this produces a convergent perturbation theory in which the Pauli corrections (here treated as a second--order term) cancel remarkably against the pion true absorption terms. Parameter--free results, including the delta--nucleus shell--model potential, Pauli corrections, pion true absorption, and short--range correlations are presented. (2 figures available from authors)Comment: 13 page

    The Computational Complexity of the Lorentz Lattice Gas

    Full text link
    The Lorentz lattice gas is studied from the perspective of computational complexity theory. It is shown that using massive parallelism, particle trajectories can be simulated in a time that scales logarithmically in the length of the trajectory. This result characterizes the ``logical depth" of the Lorentz lattice gas and allows us to compare it to other models in statistical physics.Comment: 9 pages, LaTeX, to appear in J. Stat. Phy

    Localization of bosonic atoms by fermionic impurities in a 3d optical lattice

    Full text link
    We observe a localized phase of ultracold bosonic quantum gases in a 3-dimensional optical lattice induced by a small contribution of fermionic atoms acting as impurities in a Fermi-Bose quantum gas mixture. In particular we study the dependence of this transition on the fermionic 40K impurity concentration by a comparison to the corresponding superfluid to Mott insulator transition in a pure bosonic 87Rb gas and find a significant shift in the transition parameter. The observed shift is larger than expected based on a mean-field argument, which is a strong indication that disorder-related effects play a significant role.Comment: 4 pages, 4 figure
    • …
    corecore