3,364 research outputs found
IRAC Observations of M81
IRAC images of M81 show three distinct morphological constituents: a smooth
distribution of evolved stars with bulge, disk, and spiral arm components; a
clumpy distribution of dust emission tracing the spiral arms; and a pointlike
nuclear source. The bulge stellar colors are consistent with M-type giants, and
the disk colors are consistent with a slightly younger population. The dust
emission generally follows the blue and ultraviolet emission, but there are
large areas that have dust emission without ultraviolet and smaller areas with
ultraviolet but little dust emission. The former are presumably caused by
extinction, and the latter may be due to cavities in the gas and dust created
by supernova explosions. The nucleus appears fainter at 8 um than expected from
ground-based 10 um observations made four years ago.Comment: ApJS in press (Spitzer special issue); 15 pages, 3 figures. Changes:
unused references removed, numbers and labels in Table 1 change
Kinematic Masses of Super Star Clusters in M82 from High-Resolution Near-Infrared Spectroscopy
Using high-resolution (R~22,000) near-infrared (1.51 -- 1.75 microns) spectra
from Keck Observatory, we measure the kinematic masses of two super star
clusters in M82. Cross-correlation of the spectra with template spectra of cool
evolved stars gives stellar velocity dispersions of sigma_r=15.9 +/- 0.8 km/s
for MGG-9 and sigma_r=11.4 +/- 0.8 km/s for MGG-11. The cluster spectra are
dominated by the light of red supergiants, and correlate most closely with
template supergiants of spectral types M0 and M4.5. We fit King models to the
observed profiles of the clusters in archival HST/NICMOS images to measure the
half-light radii. Applying the virial theorem, we determine masses of 1.5 +/-
0.3 x 10^6 M_sun for MGG-9 and 3.5 +/- 0.7 x 10^5 M_sun for MGG-11. Population
synthesis modelling suggests that MGG-9 is consistent with a standard initial
mass function, whereas MGG-11 appears to be deficient in low-mass stars
relative to a standard IMF. There is, however, evidence of mass segregation in
the clusters, in which case the virial mass estimates would represent lower
limits.Comment: 16 pages, 8 figures; ApJ, in pres
COLA. III. Radio Detection of Active Galactic Nucleus in Compact Moderate Luminosity Infrared Galaxies
We present results from 4.8 GHz Very Large Array (VLA) and global very long baseline interferometry (VLBI) observations of the northern half of the moderate FIR luminosity (median L_(IR) = 10^(11.01) L_☉) COLA sample of star-forming galaxies. VLBI sources are detected in a high fraction (20/90) of the galaxies observed. The radio luminosities of these cores (~10^(21) W Hz^(–1)) are too large to be explained by radio supernovae or supernova remnants and we argue that they are instead powered by active galactic nuclei (AGNs). These sub-parsec scale radio cores are preferentially detected toward galaxies whose VLA maps show bright 100-500 parsec scale nuclear radio components. Since these latter structures tightly follow the FIR to radio-continuum correlation for star formation, we conclude that the AGN-powered VLBI sources are associated with compact nuclear starburst environments. The implications for possible starburst-AGN connections are discussed. The detected VLBI sources have a relatively narrow range of radio luminosity consistent with models in which intense compact Eddington-limited starbursts regulate the gas supply onto a central supermassive black hole. The high incidence of AGN radio cores in compact starbursts suggests little or no delay between the starburst phase and the onset of AGN activity
Shocked Molecular Hydrogen in the 3C 326 Radio Galaxy System
The Spitzer spectrum of the giant FR II radio galaxy 3C 326 is dominated by
very strong molecular hydrogen emission lines on a faint IR continuum. The H2
emission originates in the northern component of a double-galaxy system
associated with 3C 326. The integrated luminosity in H2 pure-rotational lines
is 8.0E41 erg/s, which corresponds to 17% of the 8-70 micron luminosity of the
galaxy. A wide range of temperatures (125-1000 K) is measured from the H2 0-0
S(0)-S(7) transitions, leading to a warm H2 mass of 1.1E9 Msun. Low-excitation
ionic forbidden emission lines are consistent with an optical LINER
classification for the active nucleus, which is not luminous enough to power
the observed H2 emission. The H2 could be shock-heated by the radio jets, but
there is no direct indication of this. More likely, the H2 is shock-heated in a
tidal accretion flow induced by interaction with the southern companion galaxy.
The latter scenario is supported by an irregular morphology, tidal bridge, and
possible tidal tail imaged with IRAC at 3-9 micron. Unlike ULIRGs, which in
some cases exhibit H2 line luminosities of comparable strength, 3C 326 shows
little star-formation activity (~0.1 Msun/yr). This may represent an important
stage in galaxy evolution. Starburst activity and efficient accretion onto the
central supermassive black hole may be delayed until the shock-heated H2 can
kinematically settle and coolComment: 27 pages, 7 figures, accepted for publication in the Astrophysical
Journa
High-Resolution Measurements of the Dark Matter Halo of NGC 2976: Evidence for a Shallow Density Profile
We have obtained two-dimensional velocity fields of the dwarf spiral galaxy
NGC 2976 in Halpha and CO. The high spatial (~75 pc) and spectral (13 km/s and
2 km/s, respectively) resolution of these observations, along with our
multicolor optical and near-infrared imaging, allow us to measure the shape of
the density profile of the dark matter halo with good precision. We find that
the total (baryonic plus dark matter) mass distribution of NGC 2976 follows a
rho_tot ~ r^(-0.27 +/- 0.09) power law out to a radius of 1.8 kpc, assuming
that the observed radial motions provide no support. The density profile
attributed to the dark halo is even shallower, consistent with a nearly
constant density of dark matter over the entire observed region. A maximal disk
fit yields an upper limit to the K-band stellar mass-to-light ratio (M*/L_K) of
0.09^{+0.15}_{-0.08} M_sun/L_sun,K (including systematic uncertainties), with
the caveat that for M*/L_K > 0.19 M_sun/L_sun,K the dark matter density
increases with radius, which is unphysical. Assuming 0.10 M_sun/L_sun,K <
M*/L_K < 0.19 M_sun/L_sun,K, the dark matter density profile lies between
rho_dm ~ r^-0.17 and rho_dm ~ r^-0.01. Therefore, independent of any
assumptions about the stellar disk or the functional form of the density
profile, NGC 2976 does not contain a cuspy dark matter halo. We also
investigate some of the systematic effects that can hamper rotation curve
studies, and show that 1) longslit rotation curves are far more vulnerable to
systematic errors than two-dimensional velocity fields, 2) NGC 2976 contains
large radial motions at small radii, and 3) the Halpha and CO velocity fields
of NGC 2976 agree within their uncertainties. [slightly abridged]Comment: 30 pages, 4 tables, 13 figures (7 in color; Figures 1 and 3 are
low-resolution to save space). Accepted for publication in ApJ. Version with
full-resolution figures available at
http://astro.berkeley.edu/~bolatto/ngc2976rotation.ps (46 MB
Increased breast tissue receptor activator of nuclear factor- κB ligand (RANKL) gene expression is associated with higher mammographic density in premenopausal women
Rituximab monitoring and redosing in pediatric neuromyelitis optica spectrum disorder.
Abstract
OBJECTIVE:
To study rituximab in pediatric neuromyelitis optica (NMO)/NMO spectrum disorders (NMOSD) and the relationship between rituximab, B cell repopulation, and relapses in order to improve rituximab monitoring and redosing.
METHODS:
Multicenter retrospective study of 16 children with NMO/NMOSD receiving 652 rituximab courses. According to CD19 counts, events during rituximab were categorized as "repopulation," "depletion," or "depletion failure" relapses (repopulation threshold CD19 6510
7 10(6) cells/L).
RESULTS:
The 16 patients (14 girls; mean age 9.6 years, range 1.8-15.3) had a mean of 6.1 events (range 1-11) during a mean follow-up of 6.1 years (range 1.6-13.6) and received a total of 76 rituximab courses (mean 4.7, range 2-9) in 42.6-year cohort treatment. Before rituximab, 62.5% had received azathioprine, mycophenolate mofetil, or cyclophosphamide. Mean time from rituximab to last documented B cell depletion and first repopulation was 4.5 and 6.8 months, respectively, with large interpatient variability. Earliest repopulations occurred with the lowest doses. Significant reduction between pre- and post-rituximab annualized relapse rate (ARR) was observed (p = 0.003). During rituximab, 6 patients were relapse-free, although 21 relapses occurred in 10 patients, including 13 "repopulation," 3 "depletion," and 4 "depletion failure" relapses. Of the 13 "repopulation" relapses, 4 had CD19 10-50
7 10(6) cells/L, 10 had inadequate monitoring ( 641 CD19 in the 4 months before relapses), and 5 had delayed redosing after repopulation detection.
CONCLUSION:
Rituximab is effective in relapse prevention, but B cell repopulation creates a risk of relapse. Redosing before B cell repopulation could reduce the relapse risk further.
CLASSIFICATION OF EVIDENCE:
This study provides Class IV evidence that rituximab significantly reduces ARR in pediatric NMO/NMOSD. This study also demonstrates a relationship between B cell repopulation and relapses
Globally optimal 3D image reconstruction and segmentation via energy minimisation techniques
This paper provides an overview of a number of techniques developed within our group to perform 3D reconstruction and image segmentation based of the application of energy minimisation concepts. We begin with classical snake techniques and show how similar energy minimisation concepts can be extended to derive globally optimal segmentation methods. Then we discuss more recent work based on geodesic active contours that can lead to globally optimal segmentations and reconstructions in 2D. Finally we extend the work to 3D by introducing continuous flow globally minimal surfaces. Several applications are discussed to show the wide applicability and suitability of these techniques to several difficult image analysis problems
Imaging the cool gas, dust, star formation, and AGN in the first galaxies
When, and how, did the first galaxies and supermassive black holes (SMBH)
form, and how did they reionization the Universe? First galaxy formation and
cosmic reionization are among the last frontiers in studies of cosmic structure
formation. We delineate the detailed astrophysical probes of early galaxy and
SMBH formation afforded by observations at centimeter through submillimeter
wavelengths. These observations include studies of the molecular gas (= the
fuel for star formation in galaxies), atomic fine structure lines (= the
dominant ISM gas coolant), thermal dust continuum emission (= an ideal star
formation rate estimator), and radio continuum emission from star formation and
relativistic jets. High resolution spectroscopic imaging can be used to study
galaxy dynamics and star formation on sub-kpc scales. These cm and mm
observations are the necessary compliment to near-IR observations, which probe
the stars and ionized gas, and X-ray observations, which reveal the AGN.
Together, a suite of revolutionary observatories planned for the next decade
from centimeter to X-ray wavelengths will provide the requisite panchromatic
view of the complex processes involved in the formation of the first generation
of galaxies and SMBHs, and cosmic reionization.Comment: 8 pages total. White paper submitted to the Astro 2010 Decadal Surve
- …
