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Abstract. This paper provides an overview of a number of techniques
developed within our group to perform 3D reconstruction and image
segmentation based of the application of energy minimisation concepts.
We begin with classical snake techniques and show how similar energy
minimisation concepts can be extended to derive globally optimal seg-
mentation methods. Then we discuss more recent work based on geodesic
active contours that can lead to globally optimal segmentations and re-
constructions in 2D. Finally we extend the work to 3D by introducing
continuous flow globally minimal surfaces. Several applications are dis-
cussed to show the wide applicability and suitability of these techniques
to several difficult image analysis problems.

1 Introduction and Time-Line

In 1992 we began a research project to automatically segment cell images from
Pap Smear slides for the detection of cancer of the cervix. We investigated sim-
ple techniques based on edge detection, grayscale thresholding, and grayscale
morphology (e.g., watersheds), but could only achieve accurate segmentation on
about 60% of cell images. In 1997 we started looking at dual snake energy min-
imisation techniques as proposed by Gunn [1], but this method suffered from
poor robustness. However, Gunn did suggest a fast globally optimal method
based on converting the circular contour finding problem into a linear trellis and
then applying the Viterbi shortest path finding algorithm. This approach worked
extremely well as reported by Bamford and Lovell [2] and yielded 99.5% correct
segmentation on a cell database of nearly 20,000 cell images.

As this method was so remarkably effective on cell images there was little in-
centive to improve the method for the Pap Smear problem itself, but we still held
a desire to develop energy minimisation techniques which were more general. In
2002, Appleton and Sun [3] put the problem of representing closed contours on a
linear trellis on to a firm mathematical basis. Then, in 2003, Appleton and Tal-
bot [4, 5] extended and generalized the energy minimisation approach to handle
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the optimal segmentation of planar concave objects as well as convex images
such as cells. This extension avoided dependance on a coarse discretization grid
so that grid-bias could be removed. The extension to 3D was achieved in late
2003 by Appleton and Talbot [6] by converting the shortest path techniques into
an equivalent continuous maximum flow/minimal surface problem.

In this paper we outline the various energy minimisation segmentation tech-
niques and show how they can be applied to solve quite difficult segmentation
and reconstruction problems from diverse domains such as volumetric medical
imaging to multiview reconstruction.

2 Cell Image Segmentation using the Viterbi Shortest

Path Method

Although the use of active contours [7] is well established, it is well known that
these methods tend to suffer from local minima, initialisation, and stopping
criteria problems. Fortunately global minimum energy, or equivalently shortest-
path, searching methods have been found which are particularly effective in
avoiding such local minima problems due to the presence of the many artefacts
often associated with medical images [8–10].

An energy minimization method employed was based on a suggestion in [1]. A
circular search space is first defined within the image, bounded by two concentric
circles centralised upon the approximate centre of the nucleus found by an initial
rough segmentation technique (e.g., converging squares algorithm). This search
space is sampled to form a circular trellis by discretising both the circles and a
grid of evenly-spaced radial lines joining them (figure 1). This circular trellis is
then unwrapped in a polar to rectangular transformation yielding a conventional
linear trellis.

Fig. 1. Discrete search space

Every possible contour that lies upon the nodes of the search space is then
evaluated and an associated energy or cost function is calculated. This cost is
a function of both the contour’s smoothness and how closely it follows image



edges. The relative weighting of the cost components is controlled by a single
regularization parameter, λ ∈ [0, 1]. By choosing a high value of λ, the smooth-
ness term dominates, which may lead to contours that tend to ignore important
image edges. On the other hand, low values of λ allow contours to develop sharp
corners as they attempt to follow all high gradient edges, even those which may
not necessarily be on the desired object’s edge. Once every contour has been eval-
uated, the single contour with least cost is chosen as the global solution. The
well-known Viterbi algorithm provides an efficient method to find this global
solution as described in [2].

A data set of 19946 Pap stained cervical cell images was available for testing.
The single parameter λ was empirically chosen to be 0.7 after trial runs on
a small sub-set of the images. The effect of the choice of λ on segmentation
accuracy on this trial set is shown by the graph of figure 2. Figure 3 shows a
value of λ = 0.7 as being the most suitable for these particular images. Every
image in the data set was then segmented at λ = 0.7 and the results verified by
eye. Of the 19946 images, 99.47% were found to be correctly segmented.
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Fig. 2. Plot of percentage of correct segmentations against λ for a set of images con-
sisting of known ‘difficult’ images and randomly selected images.

With λ set at 0.0, the smoothness constraint is completely ignored and the
point of greatest gradient is chosen along each search space radius. Previous
studies [11] have shown that for approximately 65% of images, all points of
greatest gradient actually lie upon the nucleus cytoplasm border, so these“easy”
cell images will be correctly segmented. For the remaining 35% of images, a large
gradient due to an artefact or darkly stained chromatin will draw the contour
away from the desired border. As λ increases, the large curvatures present in
these configurations become less probable (figure 3).

Comments: We show in [12] that the above segmentation method can be viewed
as the application of hidden Markov model techniques where the transition ma-
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Fig. 3. The effect of increasing λ. a) λ = 0.1, b) λ = 0.2, c) λ = 0.5.

trix is determined by the curvature constraints and the observation matrix is de-
termined by the gradient image. Conceptually the Viterbi algorithm progresses
like a planar wavefront through the linear trellis in a manner not unlike an elec-
tromagnetic wave passing through a waveguide. Later when we look at the fast
marching [13, 14] and Dijkstra’s[15] shortest path algorithm, we see that these
two algorithms are more akin to spherical electromagnetic wavefronts propagat-
ing in free space.

A rather unsatisfactory step in the above development is the formation of
the linear trellis from the circular domain and the actual determination of the
shortest path. A simple way to find shortest paths on the linear trellis that
correspond to closed contours in the image domain is to replicate the M nodes
where we unwrap the circular domain such that the last column of nodes in the
trellis ia a copy of the first column. Then if there are M such nodes in a column,
we would need to evaluate each of the M paths starting and finishing on the
same node i ∈ [0 . . . M − 1]. This would require M evaluations of the Viterbi
algorithm.

Gunn [1] suggests a heuristic whereby we choose node i where the image
gradient is maximal (i.e., likely to be on the cell boundary), then we find the
shortest path beginning and ending at i. Even if the first node i is not actually
on the cell boundary, halfway around the cell image the nodes on the shortest
path are very likely to be on the boundary. So we rotate the wrapping point
180◦ and rerun the Viterbi algorithm starting from this node. In our case we
selected M=30, so we can replace 30 Viterbi evaluations with just 2. Although
this heuristic works very well in practice, in theory there are clearly situations
where it could fail.

Appleton and Sun [3] investigated this general problem of circular shortest
paths. Their method is guaranteed to find the shortest circular path and uses
a branch and bound technique to quickly locate it. The root of the branch and
bound search tree consists of the entire first column of nodes. The shortest
path to the other end of the trellis is found and this forms a lower bound on
the circular shortest path. The root node is then split in two and the shortest
path algorithm run again keeping only paths that are circular. By applying this
process recursively the node on the circular shortest path is quickly identified.



However despite this improvement a major shortcoming of all methods based
on a polar to rectangular mapping is the inability to handle concave contours,
thus severely limiting their application domain.

3 Globally Optimal Geodesic Active Contours

The classic active contour or snake model proposed by Kass [7] modelled a
segmentation boundary by a series of point masses connected by springs. This
explicit view of curves as a polygon was replaced by an implicit view of curves
as the level set of some 3D surface by Osher and Sethian [16]. Level sets offer
significant advantages over traditional snakes including improved stability and
much better handling of topology (e.g., segmentation of multiple objects with
just one contour). Another advance came in the form of geodesic active contours
as proposed by Caselles et al [17]. They demonstrated the equivalence of their
energy function to the length of a geodesic (i.e., path of least cost, path of least
time) in an isotropic space. A problem with traditional geodesic active contours
is that they are a gradient descent method and thus have all the usual problems
of initialisation, termination, and local maxima associated with such methods.
They just do not have the stability and simplicity of application of globally
optimal segmentation methods.

The globally optimal method we outline here finds closed contours in the
image domain itself rather than unwrapping the image through polar to rectan-
gular transformation. Working in the image domain means that we cannot find
simple shortest paths as that would cause a bias towards small contours. Instead
we use a contour energy of the form [18]

E[C] =

∮
C

g

r
ds (1)

where g is a measure of probability of being on the boundary (e.g., gradient) and
r is the radius of the contour C. Thus all circles centred on the origin would have
the same contour energy. Another innovation is to find the minimal contour as an
open path in an augmented helicoidal representation that allows us to represent
concave contours as illustrated in figure 4.

We use the Fast Marching Algorithm [13] to find the surface of minimal
action, also known as the distance function, whose gradient curves form minimal
geodesics. This algorithm finds the surface of minimal action by considering it
as the first time-of-arrival of a wavefront emanating from the starting point and
travelling with speed 1

g
, where g is usually the image gradient as before. The

algorithm is identical to Dijkstra’s shortest distance algorithm [15] apart from
the need to update g. Figures 5 and 6 show some segmentation results from the
globally optimal geodesic active contours method.

4 Globally Minimal Surfaces

The planar segmentation technique outlined in the last section cannot be ex-
tended to higher dimensions so we need an entirely new approach. Minimum



Fig. 4. The helicoidal representation of the cut-concave shape from [18]. (a) open curve
(b) closed curve.

Fig. 5. Globally optimal geodesic active contours applied to overlapping objects from
[18]. The cells (a) are separated despite the weak intesity gradient between them (b).

cuts and Maximum flow techniques are naturally suited to globally optimal seg-
mentation in higher dimensions. Although this has been done in the past with
discrete approximations, Appleton and Talbot [6] have developed a method based
on continuous maximal flows by solving a system of partial differential equations.
It is shown [18] that this method gives identical results to the previous globally
optimal geodesic active contour method in the case of planar images. Figure 7
shows the segmentation of volumetric MRI data and figure 8 shows the 3D re-
construction from multiview images using minimal surfaces as a postprocessor.



Fig. 6. Segmentation of MRI image of a concave contour, the corpus callosum in a
human brain, from [18]. (a) is the original Image and (b) is the segmentation via
globally optimal geodesic active contours.

Fig. 7. Segmentation of the hippocampi from an MRI dataset from [18].

5 Conclusions

These globally optimal energy minimisation methods are fast, very easy to apply,
and tend to yield robust solutions. Future work is focussed on integrating these
techniques with statistical shape models to develop an 3D EM-like algorithm
incorporating prior knowledge for detection and segmentation of known shapes.
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Fig. 8. Multiview reconstruction using globally minimal surfaces for post-processing
based on [19].
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