301 research outputs found
Front Propagation of Spatio-temporal Chaos
We study the dynamics of the front separating a spatio-temporally chaotic
region from a stable steady region using a simple model applicable to
periodically forced systems. In particular, we investigate both the coarsening
of the front induced by the inherent `noise' of the chaotic region, and the
long wavelength dynamics causing the front to develop cusps
Feedback control of unstable cellular solidification fronts
We present a numerical and experimental study of feedback control of unstable
cellular patterns in directional solidification (DS). The sample, a dilute
binary alloy, solidifies in a 2D geometry under a control scheme which applies
local heating close to the cell tips which protrude ahead of the other. For the
experiments, we use a real-time image processing algorithm to track cell tips,
coupled with a movable laser spot array device, to heat locally. We show,
numerically and experimentally, that spacings well below the threshold for a
period-doubling instability can be stabilized. As predicted by the numerical
calculations, cellular arrays become stable, and the spacing becomes uniform
through feedback control which is maintained with minimal heating.Comment: 4 pages, 4 figures, 1 tabl
Particle dynamics in sheared granular matter
The particle dynamics and shear forces of granular matter in a Couette
geometry are determined experimentally. The normalized tangential velocity
declines strongly with distance from the moving wall, independent of
the shear rate and of the shear dynamics. Local RMS velocity fluctuations
scale with the local velocity gradient to the power . These results agree with a locally Newtonian, continuum model, where the
granular medium is assumed to behave as a liquid with a local temperature
and density dependent viscosity
Bubble kinematics in a sheared foam
We characterize the kinematics of bubbles in a sheared two-dimensional foam
using statistical measures. We consider the distributions of both bubble
velocities and displacements. The results are discussed in the context of the
expected behavior for a thermal system and simulations of the bubble model.
There is general agreement between the experiments and the simulation, but
notable differences in the velocity distributions point to interesting elements
of the sheared foam not captured by prevalent models
Understanding the dynamics of segregation bands of simulated granular material in a rotating drum
Axial segregation of a binary mixture of grains in a rotating drum is studied
using Molecular Dynamics (MD) simulations. A force scheme leading to a constant
restitution coefficient is used and shows that axial segregation is possible
between two species of grains made of identical material differing by size.
Oscillatory motion of bands is investigated and the influence of the frictional
properties elucidated. The mechanism of bands merging is explained using direct
imaging of individual grains
Nonequilibrium steady states in a vibrated-rod monolayer: tetratic, nematic and smectic correlations
We study experimentally the nonequilibrium phase behaviour of a horizontal
monolayer of macroscopic rods. The motion of the rods in two dimensions is
driven by vibrations in the vertical direction. Aside from the control
variables of packing fraction and aspect ratio that are typically explored in
molecular liquid crystalline systems, due to the macroscopic size of the
particles we are also able to investigate the effect of the precise shape of
the particle on the steady states of this driven system. We find that the shape
plays an important role in determining the nature of the orientational ordering
at high packing fraction. Cylindrical particles show substantial tetratic
correlations over a range of aspect ratios where spherocylinders have
previously been shown by Bates et al (JCP 112, 10034 (2000)) to undergo
transitions between isotropic and nematic phases. Particles that are thinner at
the ends (rolling pins or bails) show nematic ordering over the same range of
aspect ratios, with a well-established nematic phase at large aspect ratio and
a defect-ridden nematic state with large-scale swirling motion at small aspect
ratios. Finally, long-grain, basmati rice, whose geometry is intermediate
between the two shapes above, shows phases with strong indications of smectic
order.Comment: 18 pages and 13 eps figures, references adde
Granular clustering in a hydrodynamic simulation
We present a numerical simulation of a granular material using hydrodynamic
equations. We show that, in the absence of external forces, such a system
phase-separates into high density and low density regions. We show that this
separation is dependent on the inelasticity of collisions, and comment on the
mechanism for this clustering behavior. Our results are compatible with the
granular clustering seen in experiments and molecular dynamic simulations of
inelastic hard disks.Comment: 4 pages, 5 figure
Model of coarsening and vortex formation in vibrated granular rods
Neicu and Kudrolli observed experimentally spontaneous formation of the
long-range orientational order and large-scale vortices in a system of vibrated
macroscopic rods. We propose a phenomenological theory of this phenomenon,
based on a coupled system of equations for local rods density and tilt. The
density evolution is described by modified Cahn-Hilliard equation, while the
tilt is described by the Ginzburg-Landau type equation. Our analysis shows
that, in accordance to the Cahn-Hilliard dynamics, the islands of the ordered
phase appear spontaneously and grow due to coarsening. The generic vortex
solutions of the Ginzburg-Landau equation for the tilt correspond to the
vortical motion of the rods around the cores which are located near the centers
of the islands.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let
Propagating front in an excited granular layer
A partial monolayer of ~ 20000 uniform spherical steel beads, vibrated
vertically on a flat plate, shows remarkable ordering transitions and
cooperative behavior just below 1g maximum acceleration. We study the stability
of a quiescent disordered or ``amorphous'' state formed when the acceleration
is switched off in the excited ``gaseous'' state. The transition from the
amorphous state back to the gaseous state upon increasing the plate's
acceleration is generally subcritical: An external perturbation applied to one
bead initiates a propagating front that produces a rapid transition. We measure
the front velocity as a function of the applied acceleration. This phenomenon
is explained by a model based on a single vibrated particle with multiple
attractors that is perturbed by collisions. A simulation shows that a
sufficiently high rate of interparticle collisions can prevent trapping in the
attractor corresponding to the nonmoving ground state.Comment: 16 pages, 9 figures, revised version, to appear in Phys. Rev. E, May
199
Creep motion in a granular pile exhibiting steady surface flow
We investigate experimentally granular piles exhibiting steady surface flow.
Below the surface flow, it has been believed exisitence of a `frozen' bulk
region, but our results show absence of such a frozen bulk. We report here that
even the particles in deep layers in the bulk exhibit very slow flow and that
such motion can be detected at an arbitrary depth. The mean velocity of the
creep motion decays exponentially with depth, and the characteristic decay
length is approximately equal to the particle-size and independent of the flow
rate. It is expected that the creep motion we have seeen is observable in all
sheared granular systems.Comment: 3 pages, 4 figure
- …
