301 research outputs found

    Front Propagation of Spatio-temporal Chaos

    Full text link
    We study the dynamics of the front separating a spatio-temporally chaotic region from a stable steady region using a simple model applicable to periodically forced systems. In particular, we investigate both the coarsening of the front induced by the inherent `noise' of the chaotic region, and the long wavelength dynamics causing the front to develop cusps

    Feedback control of unstable cellular solidification fronts

    Get PDF
    We present a numerical and experimental study of feedback control of unstable cellular patterns in directional solidification (DS). The sample, a dilute binary alloy, solidifies in a 2D geometry under a control scheme which applies local heating close to the cell tips which protrude ahead of the other. For the experiments, we use a real-time image processing algorithm to track cell tips, coupled with a movable laser spot array device, to heat locally. We show, numerically and experimentally, that spacings well below the threshold for a period-doubling instability can be stabilized. As predicted by the numerical calculations, cellular arrays become stable, and the spacing becomes uniform through feedback control which is maintained with minimal heating.Comment: 4 pages, 4 figures, 1 tabl

    Particle dynamics in sheared granular matter

    Get PDF
    The particle dynamics and shear forces of granular matter in a Couette geometry are determined experimentally. The normalized tangential velocity V(y)V(y) declines strongly with distance yy from the moving wall, independent of the shear rate and of the shear dynamics. Local RMS velocity fluctuations δV(y)\delta V(y) scale with the local velocity gradient to the power 0.4±0.050.4 \pm 0.05. These results agree with a locally Newtonian, continuum model, where the granular medium is assumed to behave as a liquid with a local temperature δV(y)2\delta V(y)^2 and density dependent viscosity

    Bubble kinematics in a sheared foam

    Full text link
    We characterize the kinematics of bubbles in a sheared two-dimensional foam using statistical measures. We consider the distributions of both bubble velocities and displacements. The results are discussed in the context of the expected behavior for a thermal system and simulations of the bubble model. There is general agreement between the experiments and the simulation, but notable differences in the velocity distributions point to interesting elements of the sheared foam not captured by prevalent models

    Understanding the dynamics of segregation bands of simulated granular material in a rotating drum

    Full text link
    Axial segregation of a binary mixture of grains in a rotating drum is studied using Molecular Dynamics (MD) simulations. A force scheme leading to a constant restitution coefficient is used and shows that axial segregation is possible between two species of grains made of identical material differing by size. Oscillatory motion of bands is investigated and the influence of the frictional properties elucidated. The mechanism of bands merging is explained using direct imaging of individual grains

    Nonequilibrium steady states in a vibrated-rod monolayer: tetratic, nematic and smectic correlations

    Get PDF
    We study experimentally the nonequilibrium phase behaviour of a horizontal monolayer of macroscopic rods. The motion of the rods in two dimensions is driven by vibrations in the vertical direction. Aside from the control variables of packing fraction and aspect ratio that are typically explored in molecular liquid crystalline systems, due to the macroscopic size of the particles we are also able to investigate the effect of the precise shape of the particle on the steady states of this driven system. We find that the shape plays an important role in determining the nature of the orientational ordering at high packing fraction. Cylindrical particles show substantial tetratic correlations over a range of aspect ratios where spherocylinders have previously been shown by Bates et al (JCP 112, 10034 (2000)) to undergo transitions between isotropic and nematic phases. Particles that are thinner at the ends (rolling pins or bails) show nematic ordering over the same range of aspect ratios, with a well-established nematic phase at large aspect ratio and a defect-ridden nematic state with large-scale swirling motion at small aspect ratios. Finally, long-grain, basmati rice, whose geometry is intermediate between the two shapes above, shows phases with strong indications of smectic order.Comment: 18 pages and 13 eps figures, references adde

    Granular clustering in a hydrodynamic simulation

    Full text link
    We present a numerical simulation of a granular material using hydrodynamic equations. We show that, in the absence of external forces, such a system phase-separates into high density and low density regions. We show that this separation is dependent on the inelasticity of collisions, and comment on the mechanism for this clustering behavior. Our results are compatible with the granular clustering seen in experiments and molecular dynamic simulations of inelastic hard disks.Comment: 4 pages, 5 figure

    Model of coarsening and vortex formation in vibrated granular rods

    Full text link
    Neicu and Kudrolli observed experimentally spontaneous formation of the long-range orientational order and large-scale vortices in a system of vibrated macroscopic rods. We propose a phenomenological theory of this phenomenon, based on a coupled system of equations for local rods density and tilt. The density evolution is described by modified Cahn-Hilliard equation, while the tilt is described by the Ginzburg-Landau type equation. Our analysis shows that, in accordance to the Cahn-Hilliard dynamics, the islands of the ordered phase appear spontaneously and grow due to coarsening. The generic vortex solutions of the Ginzburg-Landau equation for the tilt correspond to the vortical motion of the rods around the cores which are located near the centers of the islands.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    Propagating front in an excited granular layer

    Full text link
    A partial monolayer of ~ 20000 uniform spherical steel beads, vibrated vertically on a flat plate, shows remarkable ordering transitions and cooperative behavior just below 1g maximum acceleration. We study the stability of a quiescent disordered or ``amorphous'' state formed when the acceleration is switched off in the excited ``gaseous'' state. The transition from the amorphous state back to the gaseous state upon increasing the plate's acceleration is generally subcritical: An external perturbation applied to one bead initiates a propagating front that produces a rapid transition. We measure the front velocity as a function of the applied acceleration. This phenomenon is explained by a model based on a single vibrated particle with multiple attractors that is perturbed by collisions. A simulation shows that a sufficiently high rate of interparticle collisions can prevent trapping in the attractor corresponding to the nonmoving ground state.Comment: 16 pages, 9 figures, revised version, to appear in Phys. Rev. E, May 199

    Creep motion in a granular pile exhibiting steady surface flow

    Full text link
    We investigate experimentally granular piles exhibiting steady surface flow. Below the surface flow, it has been believed exisitence of a `frozen' bulk region, but our results show absence of such a frozen bulk. We report here that even the particles in deep layers in the bulk exhibit very slow flow and that such motion can be detected at an arbitrary depth. The mean velocity of the creep motion decays exponentially with depth, and the characteristic decay length is approximately equal to the particle-size and independent of the flow rate. It is expected that the creep motion we have seeen is observable in all sheared granular systems.Comment: 3 pages, 4 figure
    corecore