12 research outputs found

    Management of hyperthyroidism due to Graves' disease: frequently asked questions and answers (if any)

    No full text
    Graves\u2019 disease is the most common cause of hyperthyroidism in iodine-replete areas. Although progress has been made in our understanding of the pathogenesis of the disease, no treatment targeting pathogenic mechanisms of the disease is presently available. Therapies for Graves\u2019 hyperthyroidism are largely imperfect because they are bound to either a high rate of relapsing hyperthyroidism (antithyroid drugs) or lifelong hypothyroidism (radioiodine treatment or thyroidectomy). Aim of the present article is to offer a practical guidance to the reader by providing evidence-based answers to frequently asked questions in clinical practice

    Identification of a Common Subnuclear Localization Signal

    No full text
    Proteins share peptidic sequences, such as a nuclear localization signal (NLS), which guide them to particular membrane-bound compartments. Similarities have also been observed within different classes of signals that target proteins to membrane-less subnuclear compartments. Common localization signals affect spatial and temporal subcellular organization and are thought to allow the coordinated response of different molecular networks to a given signaling cue. Here we identify a higher-order and predictive code, {[RR(I/L)X3r](n, n≥1)+[L(φ/N)(V/L)](n,n>1)}, that establishes high-affinity interactions between a group of proteins and the nucleolus in response to a specific signal. This position-independent code is referred to as a nucleolar detention signal regulated by H+ (NoDSH+) and the class of proteins includes the cIAP2 apoptotic regulator, VHL ubiquitylation factor, HSC70 heat shock protein and RNF8 transcription regulator. By identifying a common subnuclear targeting consensus sequence, our work reveals rules governing the dynamics of subnuclear organization and ascribes new modes of regulation to several proteins with diverse steady-state distributions and dynamic properties
    corecore